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Ce cours cherche à expliquer le fonctionnement des composants de base de
l’électronique. Il se base sur les lois de la physique du solide et plus particulièrement sur
la description des propriétés électroniques des cristaux semi-conducteurs.

Chaque composant nécessite une technologie spécifique. La conception de composants
doit donc tenir compte de ces possibilités technologiques et des règles de design qui en
découlent. D’un autre côté, une meilleure compréhension des phénomènes internes
permet d’adapter et d’optimiser la technologie et le design.

Les composants de base servent de point de départ pour l’élaboration de circuits
analogiques ou digitaux, qui eux-mêmes sont à la base des microcontrôleurs et des
microprocesseurs.
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1. Dispersion, masse effective, vitesse de groupe, bandes de conduction et de valence.

2. Densité d’états, niveau de Fermi, concentrations n et p, donneurs, accepteurs, loi
d’action de masse.

3. Zones de charge, courants de conduction et de diffusion, mobilité.

4. Loi de continuité, génération, recombinaison, temps de vie, longueur de diffusion,
quasi-niveaux de Fermi, variations des potentiels d’énergie.

5. Jonction métal / semi-conducteur, barrière de potentiel, contacts ohmiques.

6. Diode p-n à l’équilibre et hors équilibre, schéma de bande, zone de déplétion,
courants dans une diode, capacités et schéma équivalent petits signaux.

7. Transistors bipolaires, schéma de bande, gain, modèle de Ebers-Moll.

8. Cellules solaires.

9. Jonction MOS, potentiel de surface, accumulation, déplétion, inversion faible et
forte, capacité MOS, MOS en déplétion profonde, Charge Coupled Device (CCD

10. FET, NMOS, PMOS, subthreshold, inversion forte,

11. CMOS, JFET, HEMT, mémoires floating gate.

12. Circuits CMOS pour les fonctions logiques, inverseur CMOS.

13. Exemples de circuits analogiques CMOS: ampli à source commune, ampli
différentiel.

14. Comparaison et choix de diodes et de transistors.
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Ce cours est avant tout basé sur la référence [1] qui décrit les composants de base ainsi
que des composants avancés (non abordés dans ce cours) de la microélectronique.

Il est disponible en livre électronique pour les étudiants EPFL. Il suffit de le rechercher
sur le site de la bibliothèque.

La référence [2] contient les explications détaillées sur les différents concepts abordés
dans le cours. Il inclut dans les derniers chapitres aussi les aspects de fabrication
microélectronique et de salle blanche.

La référence [3] détaille également les concepts de ce cours. Les aspects « électronique
des corps solides » (chapitre 1 de ce cours) y sont plus particulièrement analysés, mais la
description technologique n’y est pas incluse.

La référence [4] se concentre sur les circuits CMOS digitaux et analogiques décrits aux
chapitres 12 et 13.
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CS‐2023 : contenu du cours 
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Masses effectives 

CS‐1‐1 

CS‐1‐2 

CS‐1‐3 

CS‐1‐4 

CS‐1‐5 

2‐équilibre  Trous 
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Densité avec dopage 

CS‐2‐1 

CS‐2‐2 
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CS‐2‐4 
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Equation de Poisson 

Courant de diffusion 
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CS‐3‐2 

CS‐3‐3 
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Equation de continuité 

Schéma de bandes 

Faible injection 
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CS‐4‐2 

CS‐4‐3 

CS‐4‐4 
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5‐Metal‐semicond  Equilibre MS 

Courant MS 

Contacts ohmiques 

CS‐5‐1 
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CS‐5‐3 

6‐jonction pn  Equilibre PN 

Hors équilibre PN 

Diode idéale PN 

Diode réelle PN 

CS‐6‐1 

CS‐6‐2 

CS‐6‐3 

CS‐6‐4 



7‐bipolaire npn  Principe BJT 

Ebers‐Moll 

Early 

Petit signal BJT 

CS‐7‐1 

CS‐7‐2 

CS‐7‐3 

CS‐7‐4 

8‐solar cells  Solar cells IV curve 

Solar pannels 

Solar cell efficiencies 

Hétéro solar cells 

Solar cells and batteries 

CS‐8‐1 

CS‐8‐2 

CS‐8‐3 

CS‐8‐4 

CS‐8‐5 

9‐jontion MOS  Jonction MOS 

Première équation MOS 

CCD 

Capa‐MOS 

CS‐9‐1 

CS‐9‐2 

CS‐9‐3 

CS‐9‐4 

LIVRE C 

10‐MOSFET  Structure MOSFET 

Fonctionnement MOSFET 

Modèle basic d’un MOSFET 

MOSFET petits signaux 

CS‐10‐1 

CS‐10‐2 

CS‐10‐3 

CS‐10‐4 

11‐CMOS 
techno+memories 

Technologie CMOS 

Principe JFET 

Mémoires 

Floating gate 

CS‐11‐1 

CS‐11‐2 

CS‐11‐3 

CS‐11‐4 

12‐circuits‐digitaux  Inverseur CMOS 

NAND‐NOR 

Logique et oscillateur CMOS 

CS‐12‐1 

CS‐12‐2 

CS‐12‐3 

13‐circuits‐
analogiques 

Source de courant 

Ampli de tension 

Ampli différentiel 

CS‐13‐1 

CS‐13‐2 

CS‐13‐3 



  14‐comparaison  Comparaison des diodes 

Comparaison des transistors 

Avantages des CMOS 

CS‐14‐1 

CS‐14‐2 

CS‐14‐3 
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6.3 sonde de Kelvin 
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S6‐2 

S6‐3 
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S7‐1 
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9.2 MOS jonction substrat n : charges 

S9‐1 
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PARTIE C 

10  10.1 NMOS subthreshold 

10.2 VLSI et dispersion d’énergie 

10.3 tension sur l’oxyde 
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S10‐4 

11  11.1 contrôle de VT 

11.2 transmission gate 

11.3 ampli de tension avec JFET 

11.4 mémoires avec traps dans oxyde 

11.5 ISFET 
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12.3 dimensionnement NAND 
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S12‐4 

13  13.1 ampli diff et comparateur 

13.2 ampli de tension avec NMOS 
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14  14.1 charge et décharge d’une capa 

14.2 pertes dynamiques dans inverseur 
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Une représentation naïve d’un semi-conducteur est celle d’un cristal fait d’un alignement
régulier de noyaux atomiques fixes avec des électrons libres se baladant entre eux. Dans
ce cas:

- Seules les charges négatives sont libres et portent le courant (figure de gauche),

- La masse (l’inertie) de ces charges est celle des électrons dans le vide.

Considérons l’effet Hall. Un courant I circule dans une plaque semi-conductrice. Le
champ magnétique B produit une force de Lorenz sur les charges mobiles. Les charges
mobiles (quelque soit leur signe) sont attirées dans la même direction par cette force de
Lorenz. Sur les deux figures ci-dessus il y a accumulation de charges mobiles sur le bas
de la plaque semi-conductrice. Pour des charges mobiles positives la tension de Hall VH a
un signe contraire à celle produite par des charges mobiles négatives.

Expérimentalement, la tension de Hall peut avoir les deux signes! Il y a donc parfois des
charges libres négatives et parfois des charges libres positives dans le cristal. Nous
devons comprendre quelles sont ces particules !

1ère question: Quelles sont les masses de ces particules ?
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Voici des exemples de capteurs Hall.

a) Sur des semi-conducteurs à haute mobilité (comme le InSb ou le GaAs) la couche
conductrice est en général obtenue par croissance épitaxiale puis sa forme est définie
par attaque chimique.

b) Dans le silicium, la couche conductrice est une région implantée dans le substrat lui-
même.

La croix centrale forme le capteur Hall proprement dit. Ses bras ont une épaisseur
pouvant descendre jusqu’au dessous du micron.
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Considérons une galette (wafer) de semi-conducteur dans un champ magnétique Bz

perpendiculaire. Appliquons un champ électrique haute fréquence Ex sur ce setup (ce
champ est en fait une micro-onde ou une source dans le lointain infrarouge).

Sur un porteur libre, la force de Lorenz équilibre la force centrifuge:

Le rayon du cercle dans l’espace dépend linéairement de la vitesse.

Le temps T pour accomplir une rotation est relié à la fréquence de cyclotron c par:

La fréquence de cyclotron est indépendante de la vitesse et du rayon ! Le champ B est
connu, nous pouvons déterminer la masse de la particule libre dans la galette de semi-
conducteur.

2v mv
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L’expérience de résonance cyclotronique peut être faite dans le silicium. Les résultats
montrent des effets surprenants:

1) Il y a plusieurs résonances, donc plusieurs sortes de particules libres peuplent le semi-
conducteur. Nous verrons plus tard dans ce chapitre qu’il s’agit d’électrons ou
« d’électrons manquants » appelés « trous ».

2) Les masses de ces particules sont d’un ordre de grandeur comparable à la masse de
l’électron dans le vide. Mais elles en diffèrent légèrement (les pics d’absorption sur le
graphique de gauche correspondent à 0.16, 0.22, 0.34 et 0.49 de la masse de l’électron
dans le vide).

3) Plus surprenant encore: les positions des pics, donc les masses des particules
dépendent de l’orientation de la galette de silicium dans le champ magnétique ! (voir
figure de droite). En fait seuls les deux pics centraux varient, nous verrons plus tard
qu’ils correspondent aux électrons libres dans la bande de conduction.

 Une nouvelle représentation (semi-quantique) des semi-conducteurs et de la
matière est nécessaire.

Comme point de départ de cette nouvelle représentation nous pouvons nous inspirer de la
nature de la lumière: à la fois « onde » et « particule ».
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Le STM (Scanning Tunnel Microscope) permet de voir les atomes avec des résolutions
inférieures à l’Angstrom. Le silicium a été étudié dans plusieurs orientations cristallines.

- (112)-orientation: deux atomes sont très proches, néanmoins la résolution est
suffisante pour les voir séparément.

- (111)-surface: le réseau régulier est clairement visible. Un atome de Phosphore (P) sert
de donneur (dopant de type N), il provoque une perturbation du réseau clairement
visible au centre de l’image.

- (100)-surface: deux terrasses sont visibles. Elles sont séparées par une hauteur d’un
seul plan atomique (1.36 Angstrom). Une «ligne atomique» a été déposée sur la droite.

Ces images montrent que le silicium est un réseau régulier. Si nous pensons dan le
modèle quantique, la nature est décrite par des ondes. Dans une structure régulière, les
ondes se décrivent par des modes globaux et les «particules» par des paquets d’ondes se
déplaçant dans le réseau. Nous allons suivre cette pensée pour comprendre mieux la
nature des porteurs de charges dans le silicium.
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Les ondes, par exemple dans l’eau, peuvent interférer. Deux ondes radiales dans un lac,
si elles sont en phase, produisent des zones d’interférence constructive et d’autres zones
d’interférence destructive (voir: http://video.mit.edu/watch/ripple-tank-interference-of-
two-point-sources-4273/ ).

L’expérience des « fentes de Young » est connue en optique. Un photon passe à travers
deux fentes, une interférence se produit sur l’écran derrière les fentes. Cela prouve la
nature « ondulatoire » de la lumière.

(voir: http://www.youtube.com/watch?v=dNx70orCPnA )

Si le modèle quantique s’applique à l’électron, nous devrions pouvoir produire des
interférences, comme avec l’eau ou la lumière.

Nous proposons ici la même expérience mais avec des électrons dans un tube à vide.
Chaque électron passe par les deux fentes. Si l’électron est une onde, des lignes
d’interférences devraient apparaitre sur l’écran de détection !
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Cette expérience pose la question suivante: l’électron dans le vide est-il une particule ou
une onde ?

Un jet d’électrons est envoyé sur deux fentes puis ce jet est détecté par une « caméra à
électrons » capable de détecter le point d’arrivée d’un seul électron.

- Si le jet est composé de particules élémentaires indivisibles (électrons), chaque
particule ne peut passer qu’à travers une seule fente et il ne devrait pas se produire
d’interférence. De plus, un seul détecteur doit réagir lorsque l’intensité du jet est très
fortement diminuée.

- Si le jet est en fait une onde, il doit y avoir interférence et de plus l’onde arrive sur tous
les détecteurs même à très faible intensité.

L’expérience nous force à admettre:

1) L’électron est une particule lorsqu’il interagit avec le détecteur,

2) L’électron est une onde lorsqu’il se propage.

 Physique quantique:

À toute particule est associée une fonction d’onde. La probabilité de trouver la
particule en un point est donnée par « l’intensité de la fonction d’onde » (sa norme
au carré).

Un exemple (plus connu) de particule/onde est le photon: l’intensité lumineuse
correspond au nombre de photons dans un lieu donné. La lumière produit des
interférences, mais il existe des détecteurs localisés de photons.
(voir: http://www.youtube.com/watch?v=MbLzh1Y9POQ ).
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La nature est-elle faite d’ondes ou de particules?

- Un condensateur (ou un générateur de van der Graaf) accumule des charges électriques
comme des grains de sable dans un réservoir. Un arc électrique (un éclair) et un tube
cathodique sont des canons à électrons. L’électricité est donc un flux de particules.

- La diffraction sur un obstacle ainsi que les franges d’interférence sont des signatures
typiques des ondes. La lumière est donc un phénomène ondulatoire.

MAIS:

- Les électrons sont utilisés dans les microscopes électroniques comme des ondes (voir
exercice).

- Les états atomiques sont discrets et conduisent à des raies d’absorption dans les gaz.

- Par effet tunnel, un électron peut traverser une barrière, un peu comme une onde
évanescente en optique classique.

- Dans l’effet photoélectrique, une plaque métallique émet un électron si elle est atteinte
par une onde UV. Cette émission est locale.

- Certains détecteurs (photomultiplicateurs, diodes à avalanche) produisent des
impulsions discrètes s’ils sont illuminés.

DONC:

!!! La matière et la lumière sont à la fois onde et particule !!!
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La nature est composée de particules qui interagissent entre elles. Ces particules sont
caractérisées par une énergie E et une impulsion P.

À chaque particule est associée une onde décrite par une fonction d’onde (x,t). Elle est
caractérisée par une fréquence  et un vecteur d’onde K.

Les relations de Planck et de De Broglie permettent de passer du modèle « particule » au
modèle « onde » en reliant leurs caractéristiques entre elles.

Interprétation:

La fonction d’onde (x,t) permet de calculer la probabilité de trouver la particule
associée, à un temps t donné, dans un volume dV autour du lieu x.

Cette probabilité (comme en optique) correspond à l’intensité de la fonction d’onde:

Comme nous le verrons plus tard, la relation de dispersion (reliant l’énergie à
l’impulsion) permet de calculer l’évolution spatio-temporelle de cette onde de probabilité
dans le vide. Cette relation est en lien direct avec l’équation quantique de Schrödinger
(voir complément en fin de chapitre), qui elle décrit l’évolution spatio-temporelle de la
fonction d’onde dans le cas général.

dVtxtxp  2
),(),(

 
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Pour commencer, étudions un cas simple: l’électron libre dans le vide.

Appliquons lui le formalisme quantique. Il s’agit en premier de déterminer les modes
oscillatoires permis dans le vide. L’énergie potentielle Vpot est constante et peut être
définie arbitrairement. Choisissons Vpot=0.

L’équation de Schrödinger se réduit à la relation de dispersion: E=p2/2m. Elle peut
facilement être résolue:

- Si l’énergie d’un électron est supérieure à l’énergie potentielle, alors le vecteur d’onde
K est réel et la fonction d’onde  peut se propager comme une onde plane. Si (E-Vpot)
est grand, l’onde a une oscillation rapide et un vecteur K élevé. Au-dessus de Vpot, il
existe un continuum de solutions pour les fonctions d’ondes.

- Pour les énergies inférieures à Vpot, l’onde plane se transforme en onde évanescente qui
se propage que sur une très courte distance. Il n’existe donc pas de solution
« propageante » dans cette zone. Si (Vpot-E) est grand, l’onde s’évanouit plus
rapidement.
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Un électron peut être décrite comme une superposition d’ondes planes. Un «bit»
électronique (l’électron) est décrit sous la forme d’un paquet d’ondes.

Regardons l’électron au temps t=0. par simplicité nous le décrivons comme une
«porteuse» (de vecteur d’onde K0) limité spatialement par une «enveloppe» de forme
Gaussienne (avec une extension donnée par ). Le paquet d’onde est normé à l’unité.

Les composantes spectrales de ce paquet d’onde peuvent être obtenues en utilisant la
transformée de Fourier exprimée par:

Dans l’espace de Fourier, nous trouvons une fonction Gaussienne centrée sur la porteuse
K0 et d’extension 1/.
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Nous avons décrit l’électron comme un paquet d’onde en t=0. Laissons-le se propager.

Pour cela nous travaillons dans l’espace de Fourier. Chaque terme de Fourier se propage
avec un terme e-it.

Nous exprimons ensuite la fréquence  comme une fonction quadratique en K:

C’est la différence principale avec l’optique !

La transformée de Fourier inverse, exprimée par:

permet de revenir dans l’espace X mais maintenant au temps t > 0.

L’électron est toujours une fonction Gaussienne mais centrée sur x=vg.t avec vg la vitesse
de groupe. Cette vitesse est donnée par la pente de la fonction E(K).

La fonction d’onde s’est dispersée, donc elle est devenue plus large avec le temps. La
variance de la courbe de Gauss s’est agrandie. Cela s’explique par des vitesses de
propagation différente pour chaque composante de Fourier.
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Pour un électron dans le vide, la relation de dispersion s’écrit:

L’électron est une particule, un « paquet d’onde » centré sur l’onde porteuse K0.

a) Son impulsion est:

b) Sa propagation est donnée par la vitesse de groupe:

Cette formulation correspond à la propagation

d’une particule puisque v=P/m est l’expression de la physique classique.

c) Sa masse est reliée à la courbure de la relation de dispersion par:
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La vitesse de phase est donnée par

Elle est différente pour chaque valeur de K. Le paquet d’ondes contient donc des vitesses
de propagation différentes pour chaque composante du paquet.

La vitesse de groupe correspond à la pente de la courbe E(K) pour la porteuse K0.
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Considérons deux particules de même masse m:

a) La première particule est fortement localisée (Nous l’avons mesurée très précisément
au temps t=0). Son impulsion est mal déterminée, elle va donc se disperser
rapidement.

b) La seconde particule est mal localisée au temps t=0. Son impulsion peut être connue
plus précisément, et donc elle se disperse moins.

Remarques:

Le temps de dispersion caractéristique  est approximativement:

Dans le monde macroscopique, aussi bien 0 que m sont trop grands pour que la
dispersion apparaisse après un temps mesurable.

Par exemple, pour une goutte d’eau de 1μm de diamètre:

2
01 m  

1'400 h 
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La simulation ci-dessus représente la partie réelle de la fonction d’onde d’une particule
dans le vide. La vitesse de groupe est donnée par le déplacement du maximum de
l’enveloppe. La vitesse de phase correspond au déplacement des fronts d’ondes de la
porteuse (à haute fréquence spatiale). Les petites fréquences spatiales se propagent
lentement, les hautes fréquences spatiales sont elles plus rapides. Cela explique la
dispersion du paquet d’ondes. Cela est particulièrement visible lorsque la particule est
très localisée au départ car elle contient plus de fréquences spatiales différentes.

Remarquez l’analogie avec l’optique et plus particulièrement avec la propagation d’un
bit laser dans une fibre optique. Les bits d’information se propagent aussi avec une
vitesse de groupe et plus ils sont courts plus ils ont tendance à se disperser rapidement

Conclusions:

- Le formalisme quantique peut s’appliquer à l’électron dans le vide.

- L’équation de Schrödinger se réduit à la relation de dispersion exprimant l’énergie
cinétique comme en physique classique.

- La vitesse de groupe correspond à l’expression classique de la vitesse d’une particule.

- Le seul phénomène nouveau est la dispersion des particules dans le monde
microscopique.

Question:

Pourquoi décrire l’électron se propageant dans le vide comme un paquet d’ondes ? Le
formalisme est ardu, les calculs complexes et un modèle « simple » de particule avec
énergie E et impulsion P donne apparemment le même résultat !!
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Un microscope électronique est composé d’un « canon à électrons », d’un système de
« lentilles électroniques » servant à focaliser le jet d’électrons sur la pièce à observer.
Nous allons nous intéresser au canon à électrons.

L’électron est accéléré dans le vide. Il forme un « paquet d’onde », dont l’enveloppe est
dessinée ci-dessus.

A) Esquissez l’onde elle-même (avec la porteuse) à l’entrée, au centre et à la sortie du
canon à électrons. Comment se transforme la longueur d’onde de l’électron lorsqu’il
traverse la zone d’accélération ?

B) Pourquoi utilise-t-on des électrons fortement énergétiques dans les microscopes
électroniques modernes ?

!!  Pensez à la relation quantique entre l’impulsion et la longueur d’onde !!

p. 1.21



Un électron est arraché de la cathode, sa vitesse est faible. Il est accéléré par un très fort
champ électrique entre la cathode et l’anode (mise à la tension V). Son impulsion
augmente fortement.

Dans le modèle « particule », il gagne une énergie E=p2/2m=qV. Si nous passons
maintenant dans une « onde », l’impulsion correspond au vecteur K, donc à l’inverse de
la longueur d’onde: p=ħK=h/.

Plus la tension V est grande, plus la longueur d’onde est petite. Cela correspond à une
porteuse de plus en plus rapide dans le paquet d’onde. Cette propriété se voit dans la
résolution du microscope. Comme en optique, la plus petite tache visible est de l’ordre de
. En augmentant la tension, on augmente la résolution (on diminue la dimension la plus
petite encore observable).

Remarque:

Dans les microscopes électroniques modernes, la vitesse des électrons approche celle de
la lumière. Il faut donc utiliser la théorie relativiste:

À la cathode:

À l’anode:

Impulsion:
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Voici quelques exemples d’ondes stationnaires:

1) Les cordes d’une guitare: la condition stationnaire est que la longueur W de la corde
contient un nombre entier de demi-longueur d’onde. Les états vibratoires sont
discrets. Leur énergie est reliée au carré de l’impulsion, donc par les lois de la
physique quantique au carré du vecteur K. Le spectre de l’énergie dépend de n2.

2) Les vibrations d’un anneau métallique. La condition stationnaire est donnée par la
longueur du périmètre qui doit correspondre à un nombre entier de longueur d’onde.
Les états sont aussi discrets.

Remarque:

Les vibrations des ondes d’électrons autour d’un noyau sont similaires, mais dans ce cas
nous devons travailler en 3D avec un potentiel de Coulomb. Les résultats numériques
sont forts différents, en particulier les niveaux d’énergie dépendent de 1/n2. Une
similarité demeure: les états sont discrets et cette discrétisation s’explique par le
caractère ondulatoire des électrons.
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Le noyau d’un atome forme un potentiel de coulomb radial autour de l’atome. L’équation
de Schrödinger peut être résolue en coordonnées sphériques (problème de l’atome
d’hydrogène). Nous allons utiliser une grande simplification et considérer un potentiel
unidimensionnel (1D) rectangulaire. Cela suffit pour expliquer la discrétisation des
niveaux atomiques.

Comme pour une corde de guitare, dans un puits de profondeur infinie, les résonances
possibles sont données par la condition: « L’amplitude d’oscillation aux bords est nulle ».
Donc la largeur W du puits doit être un multiple de la demi-longueur d’onde. Cela nous
définit des états K (K=2), et des niveaux d’énergie En discrets.

Si la profondeur du puits est finie, des ondes évanescentes apparaissent aux bords. La
distance de pénétration de ces ondes est plus importante pour les niveaux énergétiques
supérieurs. Tout ce passe comme si le puits de potentiel devenait plus large. On définit
parfois une largeur effective du puits Weff.

Les atomes réels ont un potentiel tridimensionnel assez complexe. Néanmoins leurs
niveaux d’énergie sont discrets.

p. 1.25



Nous avons décrit un potentiel 1D fini et rectangulaire. Les énergies sont discrète et ont
une dépendance en n2. Elles sont donc serrées au fond du puits et plus espacées au
sommet.

Considérons un puits de forme différente: avec une dépendance en 1/r.
Il serait plus étroit au fond et nettement plus large au sommet. Intuitivement nous
attendons un écartement des énergies au fond du puits et un resserrement au sommet.

Le potentiel de Coulomb qui décrit les élections autour d’un noyau atomique est en 1/r
mais en 3D. Les solutions peuvent être calculées mais nécessitent un long et fastidieux
développement mathématique qui dépasse largement ce cours.

Au final, les énergies restent discrètes mais la dépendance devient en 1/n2. Comme
attendu, les énergies sont maintenant écartées au fond du puits et très serrées eu sommet.

Seules des orbites discrètes sont possibles dans l’atome d’hydrogène. Elles correspondent 
aux orbitales atomiques.  
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Voici les orbitales calculées en résolvant mathématiquement l’équation de Schrödinger
en 3D.

Les orbites « s » ont une symétrie « sphériques ».

m correspond au nombre de longueur d’ondes pour une rotation autour de l’axe vertical
(Z).

p. 1.27



Les niveaux d’énergie de l’atome d’hydrogène peuvent être calculés en résolvant
l’équation de Schrödinger en coordonnées sphériques avec le potentiel de Coulomb. Les
calculs sont complexes (voir Feynman lectures vol. III). Il en résulte 4 nombres
quantiques:

n: 1, 2, … Il correspond aux ondes radiales et il détermine les niveaux
d’énergie.

l: 0, 1, … n-1 Il correspond à la discrétisation (quantisation) de la norme
du moment cinétique L.

m: -l, .. -1, 0, +1, … +l Il correspond à la discrétisation de Lz , la projection du
moment cinétique sur l’axe Z.

s: -1/2, +1/2 Il correspond au spin de l’électron.

En conclusion:

1) Le caractère ondulatoire des électrons explique les états atomiques discrets.

2) Entre les états permis, il y a des « zones interdites », vides d’état. (Cette constatation
prendra tout son sens dans les semi-conducteurs).

3) Des orbites différentes peuvent avoir la même énergie. Par exemple les nombres
quantiques l et m n’influencent pas l’énergie des niveaux. Les états sont
« dégénérés ».
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Les orbites « s » sont sphériques. On montre ici les probabilités de trouver l’électron à
une distance r/r0 pour ces orbitales. r0 est appelé le rayon de Bohr.

On voit clairement le caractère ondulatoire de la probabilité électronique.

Remarques:

La probabilité correspond au carré de la norme de la fonction d’onde, intégrée sur la
surface de la sphère (pour sommer toutes les probabilités indépendamment de la position
angulaire).

La probabilité présentée ici est donnée par 42 2

En conclusion:

- Plus le nombre quantique n est élevé, plus les électrons ont de probabilité de se trouver
loin du centre. Les valeurs n élevées correspondent aux orbites externes.

- Nous devons maintenant décrire ce qui se passe lorsque deux orbites externes se
touchent et forment une « liaison ».

p. 1.29



Si deux atomes sont séparés, leurs états sont identiques et localisés. Il y a un électron
dans chaque puits, la deuxième place dans le puits reste libre.

Lorsque les atomes sont plus proches, leurs fonctions d’onde se chevauchent et
s’hybrident. Deux états « globaux » apparaissent. En première approximation, ils sont la
superposition symétrique (état liant) et antisymétrique (état anti-liant) des fonctions
d’ondes primaires.

Dans l’état liant l’électron a de fortes chances d’être entre les deux atomes. Le niveau
« liant » est plus profond que le niveau « anti-liant ». À basse température, les deux
électrons seront dans la liaison, l’état anti-liant restant libre.

Une analogie mécanique peut être tirée: deux pendules mécaniques couplés ont deux
oscillations de base, une symétrique et l’autre antisymétrique. L’oscillation symétrique a
une fréquence (énergie) plus basse.

Dans un atome réel, à plusieurs niveaux d’énergie, le chevauchement des ondes
évanescentes définit si les états sont séparés ou proches. Les états profonds resteront
séparés; seuls les états élevés vont s’hybrider et former des états liants et anti-liants.
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Nous venons de voir un modèle simplifié d’un atome (puits de potentiel 1D) et d’une
molécule (double puits de potentiel 1D). Il nous permet de comprendre l’apparition de
niveaux d’énergie discrets et d’états de liaison et d’anti-liaison. Regardons maintenant la
structure atomique réelle de quelques atomes importants en microélectronique.

Le silicium a 4 électrons sur sa couche extérieure « 3 ». Cette couche contient en tout 8
places, elle n’est donc pas pleine. C’est elle qui est responsable des propriétés de
conduction électrique du silicium.

Les couches « 1 » et « 2 » sont pleines et ne participent pas à la conduction électrique.

Dans un atome de silicium isolé à basse température, l’état 3s est occupé par deux
électrons de spins opposés. L’état 3p a deux électrons et 4 places vides.
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Pour former un cristal, les niveaux 3s et 3p du silicium s’hybrident et forment des
liaisons covalentes, mais aussi des états anti-liants. Chaque atome participe à 4 liaisons
tétraédriques (états liants) avec ses voisins, il participe aussi à 4 états anti-liants, restés
libres à basse température.

Dans un cristal parfait (sans défaut) à basse température, toutes les liaisons sont occupées
par 2 électrons et il n’y a pas d’électron libre (c.-à-d. dans un état anti-liant) dans le
cristal. Les états anti-liants existent mais sont vides. À température plus élevée, certaines
liaisons vont se rompre et ces électrons vont alors partiellement occuper les états anti-
liants (électrons libres).

Telle que représentée sur la figure, la cellule représente l’environnement proche d’un
atome de silicium dans le cristal. Par contre, elle ne peut pas former la totalité du cristal
par simple translation périodique. Elle n’est donc pas une cellule de base du cristal.
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Les semi-conducteurs IV et III-V sont basés sur une configuration électronique
semblable.

Les atomes vont s’associer par des liaisons. Chaque atome participe à 4 liaisons et
chaque liaison contient 2 électrons. Par exemple, deux atomes de Si ont 8 électrons
placés sur 4 liaisons. De même, un groupe GaAs a aussi 8 électrons placés sur 4 liaisons.
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Le GaAs a une structure cristalline très similaire à celle du Si.

Telle que représentée sur la figure, la cellule représente l’environnement proche d’un
atome de Ga dans le cristal. Par contre, elle ne peut pas former la totalité du cristal par
simple translation périodique. Elle n’est donc pas une cellule de base du cristal.

p. 1.34



La cellule de base des semi-conducteurs IV est le « diamant ». Elle permet de former le
cristal par simple translation périodique.

Elle contient 8 atomes. Pour le Si, la distance interatomique est de 2.35Å, et la constante
du réseau a=5.43Å.

Les composants III-V ont une structure similaire, avec 8 atomes (4 de chaque sorte). Pour
le GaAs la distance interatomique est de 2.45Å, et la constante du réseau a=5.65Å.

La cellule de base définit les axes x,y,z du cristal, la constante a du réseau ainsi que les
plans cristallins (« indices de Miller »).

Remarque: Cette cellule de base n’est pas la plus petite cellule qui puisse former le
cristal par simple translation périodique ! (voir plus loin « cellule primaire »).
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En partant des états s et p de l’atome isolé, nous pouvons augmenter le nombre d’atomes.
Des états hybrides sp3 liants et anti-liants se forment.

Chaque nouvel atome apporte des nouveaux états globaux, basés sur sp3 liants et sur sp3

anti-liants. Ces états globaux ont tous des énergies légèrement différentes.

Avec N atomes, il se forme ainsi une bande quasi-continue d’états de valence. Les
électrons dans cette bande sont placés sur les liaisons entre les atomes.

De même, il se forme une bande de conduction Ces états sont fortement délocalisés et
lorsqu’un électron s’y trouve il est dit « libre ».

La zone interdite (le « gap » du semi-conducteur) correspond dans cette représentation au
saut d’énergie entre les états sp3 liant et anti-liant. Dans cette zone, aucun état n’existe et
il est donc impossible qu’un électron s’y trouve.

Conclusions:

- Les bandes sont le reflet des états électroniques discrets dans l’atome.

- Les fonctions d’ondes dans chaque bande sont les fonctions basées sur la fonction
locale de l’état électronique correspondant dans la cellule primaire.

- Dans chaque bande nous avons une relation de dispersion liant l’énergie E et le vecteur
d’onde K (courbes en rouge sur la figure).
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Chaque matériel a une structure de bande différente.

Les niveaux profonds correspondent à des états atomiques fortement localisés autour de
l’atome. Ils ne participent pas aux liaisons cristallines et sont toujours occupés par des
électrons liés à l’atome. D’un point de vue électronique ils sont inertes.

Seules les couches atomiques externes ont dégénéré en bandes. Leur propriétés
électroniques dépendent de leur niveau de remplissage.

a) Dans les métaux: Une bande est à moitié pleine. Le niveau de remplissage (défini plus
loin comme l’énergie de Fermi Ef) passe au milieu d’une bande. Cela permet aux
électrons de bouger, d’être mobiles. Ils peuvent occuper des places libres
environnantes. Cette bande est dite active. La distance entre l’énergie du vide et
l’énergie de Fermi est définie comme la « work function », caractéristique
essentielle d’un métal.

b) Dans les isolants: L’énergie de Fermi passe dans le gap. Il y a ainsi une bande de
valence pleine et une bande de conduction vide. La caractéristique essentielle est
l’affinité électronique, distance entre l’énergie du vide et le fond de la bande de
conduction. Les électrons ne peuvent pas bouger, car il n’ont aucune place vide à
disposition dans leur environnement.

c) Dans les semi-conducteurs: La situation est identique à celle dans les isolants, sauf
que le gap est faible et que des électrons peuvent sauter (thermiquement) de la bande
de valence dans la bande de conduction. Ils peuvent alors bouger librement dans cette
bande.
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Dans chaque bande, les différents états sont caractérisés par un vecteur K de la zone de
Brillouin. À ce vecteur K correspond une énergie. Nous avons donc dans chaque bande
une fonction E(K) connue sous le nom de « relation de dispersion ».

Dans les semi-conducteurs, la bande de valence est presque pleine et la bande de
conduction presque vide. Les propriétés électriques des semi-conducteurs sont donc
avant tout données par la forme des bandes autour des maxima de la bande de valence et
des minima de la bande de conduction.

L’énergie minimale de la bande de conduction est appelée: Ec

L’énergie maximale de la bande de valence est appelée: Ev

Autour de ces points extrêmes, les fonctions Ec(K) et Ev(K) peuvent être approximées
par des courbes quadratiques en K (paraboles), correspondant à la bande de conduction et
de valence respectivement. Ces courbes quadratiques ont les mêmes caractéristiques que
celle des électrons dans le vide. Elles permettent donc de définir la vitesse de groupe
(dérivée de la courbe) et la masse (inverse de la courbure) dans le semiconducteur. Ces
minima et maxima sont anisotropes, la vitesse de groupe et la masse deviennent donc
aussi anisotropes et dépendent des directions de propagation des électrons dans le
matériel.
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Autour de leurs extrêmes, les relations de dispersion (les bandes) peuvent être
développées par Taylor et approximées par des courbes quadratiques en K.

Dans un modèle isotrope 1D nous avons à partir de la physique de base:

Nous remplaçons l’impulsion P par sa valeur ħK. Le facteur 1/m est donné par la
courbure de la courbe E(K) considérée.

Pour une bande isotrope un scalaire m* , définit comme la « masse effective », suffit.

Comme pour un paquet d’ondes dans le vide, la vitesse de groupe d’une particule est le
gradient de la bande d’énergie dans laquelle elle se trouve. Une particule est donc au
repos aux extrêmes d’une bande d’énergie.

La valeur (1/m*) tel que défini ci-dessus (courbures de la bande d’énergie) permet de
relier l’accélération d’une charge dans le cristal avec la force externe F qui l’a produite
(voir exercice).
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La situation dans un semi-conducteur réel est similaire mais nettement plus complexe.

La zone de Brillouin est tridimensionnelle. Il faut donc représenter les courbes de
dispersion dans plusieurs directions cristallines. Dans une direction, les courbes sont
symétriques, on ne représente donc que les valeurs positives de K. Les courbes ci-dessus
représentent les courbes de dispersion (« les bandes ») dans les directions (100) et (111)
pour le Si et le GaAs.

Dans les deux cas les bandes de valences sont multiples. Nous distinguons une bande
« light holes (lh) » et une bande « heavy holes (hh) ». Elles ont le même maximum. Le
GaAs a aussi une bande « split-off » généralement négligeable car son maximum est plus
bas. Les maxima des bandes de valences sont situées autour du point K=0 et sont
isotropes.

Le minima de la bande de conduction du GaAs est située aussi autour du point K=0 et
elle est également isotrope. Pour le silicium la bande de conduction est formée de 6
vallées anisotropes situées proche des points X dans les directions (100). Il y a donc 6
minima équivalents.

p. 1.44
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Tableau du « gap » pour différents semi-conducteurs.

Masses effectives pour le Si et le GaAs.

Les masses pour la bande de conduction correspondent aux masses effectives des
électrons. Pour les bandes de valence, on se réfère aux masses effectives des trous (voir
plus loin).

Pour le Si, la bande de conduction a 6 vallées avec la masse longitudinale m*
l = m1 et les

masses transversales m*
t = m2=m3.

Pour les bandes de valence on distingue les bandes heavy hole et light hole et on définit
la masse heavy hole m*

hh et la masse light hole m*
lh.

On définira plus loin deux masses effectives moyennes:

m*
dos = masse effective moyenne utilisée dans le calcul de la densité d’états

(« density of states »).

m*
 = masse effective moyenne utilisée pour les propriétés de conduction.

Remarque: Toutes les masses effectives sont données en unité relative comparée à la
masse d’un électron dans le vide.

p. 1.46



Dans un morceau de silicium, un stress mécanique induit des transformations des bandes.

Par exemple pour un stress dans la direction (110):

- Les niveaux des bandes de conductions sont changés. Les 4 bandes dans les directions x 
et y montent, alors que les 2 bandes en z descendent. (Seules les directions positives 
sont montrées ici par simplicité). Les masses restent inchangées. 

- Les niveaux et les masses des bandes de valence varient également.

De telles variations des bandes résultent en des variations importantes des
caractéristiques conductrices du matériau. Un effet de piezorésistance apparaît, la
résistance du matériau dépend fortement du stress mécanique qu’il subit. Les jauges de
contraintes sont basées sur ce principe.
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Le Si est un exemple de semi-conducteur indirect.

Pour passer d’une bande de valence à une vallée de conduction, un électron doit recevoir
de l’énergie DE mais aussi une impulsion DK. Il doit donc interagir avec les vibrations
cristallines (phonons).

Le GaAs est un exemple de semi-conducteur direct.

Seule une variation d’énergie est nécessaire pour passer de la bande de valence à celle de
conduction. Ce procédé est donc plus probable.
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Dans le cas du silicium: les bandes de conduction ont leur minima déplacés vers des
valeurs de K non nulles. Nous avons donc:

Un électron peut ne pas bouger (vitesse de groupe nulle) mais avoir une impulsion non
nulle !

Explication:

L’impulsion est reliée à la fréquence spatiale de l’onde porteuse. Le déplacement de
l’électron est donné par la vitesse de groupe reliée à l’enveloppe du paquet d’ondes.
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L’énergie du gap Eg peut être mesurée optiquement.

Un photon d’énergie hhc ne peut pas être absorbé par le cristal si cette énergie est
inférieure à Eg . Aux longueurs d’onde élevées (IR), le cristal est transparent. Le gap
résulte donc en une montée rapide de l’absorption en-dessous d’une longueur d’onde
caractéristique g:

Remarque: Pour s’affranchir des problèmes de réflexion en surface, on mesure des
plaques d’épaisseur différente.

 
 mg

eVgE


24.1


p. 1.50



Nous avons jusqu’ici étudié le cristal semi-conducteur pur, c.-à-d. sans défauts. En
pratique ces défauts de structure ou d’atomes sont inévitables.

Certains défauts sont ponctuels et bien localisés au niveau atomique:

- Un atome étranger peut se substituer et prendre la place de l’atome correct dans le
cristal.

- Une place dans la structure cristalline peut être vacante.

- Un atome peut occuper une place entre les mailles du cristal, dans un interstice.

- Un atome correct peut être mal placé et occuper un interstice proche de sa place dans la
structure cristalline.

Tous ces défauts rompent la périodicité du cristal et influent légèrement sur le
déplacement des électrons dans le cristal (voir « mobilité » et «impurity scattering » au
chapitre 3) .
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Selon la position du « flat primaire » et du « flat secondaire », il est aisé de reconnaître
les directions cristallines et le dopage d’un wafer.
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Lorsqu’il interagit, l’électron est une particule d’énergie E et d’impulsion P. Lorsqu’il se
propage, l’électron est un paquet d’ondes de fréquence  et de vecteur d’onde K.

L’ordre atomique d’un cristal conduit à la formation de:

- Bandes de valence: Formées à partir d’états liants (liaisons).

- Bandes de conduction: Formées avec des états anti-liants (libres).

- Zone interdite: « Gap » direct ou indirect.

À basse température, la bande de valence est pleine, celle de conduction vide.

La zone de Brillouin contient tous les vecteurs d’ondes décrivant le cristal. Ces vecteurs
d’onde K correspondent à l’impulsion P de la particule. À chaque interaction avec la
matière (chocs) l’impulsion et l’énergie sont conservés.

Pour chaque bande, une relation de dispersion relie E et le vecteur d’onde K. Aux
extrema elle peut être approximée par une fonction quadratique. Les courbures aux
extrema des fonctions de dispersion sont les inverses des masses effectives. Ce tenseur
relie l’accélération avec la force externe qui la produit. La vitesse de groupe est
déterminée par le gradient de la relation de dispersion E(K).
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Dans un semi-conducteur « intrinsèque », l’influence du dopage est négligeable. Il peut
donc être modélisé par un semi-conducteur « pur », idéalement composé d’atomes
corrects (silicium par exemple). Comme nous l’avons vu au chapitre 1, à basse
température toutes les liaisons de valence sont occupées. La bande de valence est pleine
et la bande de conduction totalement vide.

 Il n’y a pas de déplacement possible de charges électriques. En effet, dans la bande de
valence un électron ne peut pas sauter dans une liaison vide, et dans la bande de
conduction aucun porteur n’est présent. Le semi-conducteur se comporte comme un
isolant.

p. 2.4



Dans ce même semi-conducteur intrinsèque, une élévation de la température permet de
rompre une liaison, un électron passant de la bande de valence à la bande de conduction.
Une place libre (un « trou ») est généré dans la bande de valence et un électron apparaît
dans la bande de conduction.

La probabilité d’une telle rupture de liaison par effet thermique dépend de la largeur du
gap Eg. Si le gap est très grand par rapport à l’énergie thermique kT, ces ruptures sont
négligeables et nous aurons un matériel isolant. Plus le gap diminue et plus la génération
thermique d’électron/trou est fréquente. Le matériel devient plus conducteur.

Remarque: Si le gap est vraiment très faible, les bandes de valence et de conduction se
touchent presque et la conduction est très bonne. On parle parfois dans ce cas de semi-
métal.

p. 2.5



Sous l’effet thermique (mouvement brownien) ou sous l’effet d’une force extérieure
(champ électrique par exemple), l’électron libre et le trou se séparent et bougent
indépendamment l’un de l’autre.

Le trou est une charge négative manquante. Dans la zone proche du trou, il y a plus de
charges positives dans les noyaux des atomes que d’électrons dans les liaisons
interatomiques. Le trou correspond donc à une zone chargée positivement.

Après leur génération, l’électron dans la bande de conduction et le trou dans la bande de
valence sont des charges menant une existence indépendante. Il y a donc deux sortes de
porteurs libres dans un semi-conducteur: les électrons de la bande de conduction et les
trous de la bande de valence. Tous deux participent aux propriétés conductrices du semi-
conducteur.

p. 2.6
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L’électron cherche à minimiser son énergie. Il va donc occuper les niveaux d’énergie les
plus bas dans le diagramme de bande.

Dans la bande de conduction l’électron libre est comme une bille dans un pot, il
cherche à atteindre le fond du pot. L’énergie thermique agit comme une vibration
aléatoire autour de cet équilibre.

Dans la bande de valence, les électrons occupent les niveaux profonds, donc les trous
(places libres) sont comme des bulles d’air qui occupent les niveaux énergétiques les
plus élevés dans cette bande. De nouveau la température agit comme une vibration
aléatoire autour de cet équilibre.

Il arrive qu’un électron de la bande de conduction réintègre une liaison de valence
inoccupée. Il y a alors recombinaison de la paire électron/trou. C’est l’effet contraire à la
génération de paires électron/trou. Dans les deux cas la charge totale est conservée et le
matériel reste neutre.
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La notion de « trou » doit remplacer une bande de valence pleine d’électrons. Il faut
pour cela définir les propriétés du « trou » de façon à égaler celles de l’ensemble des
électrons dans la bande de valence.

- Le trou a une charge positive, elle correspond à la charge du noyau atomique non-
compensée par l’électron de liaison manquant.

- Lors de la génération d’un électron-trou l’impulsion totale du système est
conservée. L’impulsion du trou est égale mais de signe opposé à celle de
l’électron. Dans la bande de valence, tout électron a un électron d’impulsion
opposée, sauf l’électron en –K0. La résultante des impulsions est donc

- De même dans la bande de valence, les vitesse des électrons se compensent deux à
deux, sauf pour l’électron d’impulsion -K0. Cet électron est une charge négative
ayant une vitesse de signe opposé à celle de l’électron manquant. Le trou de charge
positive doit donc avoir la même vitesse que l’électron manquant. La vitesse de
groupe du trou est donnée au signe près par la pente de la bande de valence.

- Dans l’exemple ci-dessus, le trou a une impulsion négative (-K0), et également une
vitesse négative. Le tenseur 1/mh doit être positif. La masse du trou est positive et
de signe opposé à la courbure de la bande de valence.

- L’énergie des trous doit être lue à l’envers: son énergie potentielle est minimale
au sommet de la bande de valence. L’énergie cinétique des électrons est positive et
donnée par (Ec-Ec0). L’énergie cinétique des trous est elle donnée par –(Ev-Ev0), elle
est également positive

Voir: Ch. Kittel, « Introduction to Solid State Physics », Wiley, p. 206 …

0hP K  

p. 2.9
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Le calcul de la densité d’états électroniques dans l’espace K est trivial. Comme pour les
transformées de Fourier, les vecteurs d’onde K sont équidistants. Pour un cristal cubique
de dimension (LꞏLꞏL), les vecteurs K permis occupent les mailles d’un réseau régulier de
période 2/L.

Le taux d’occupation des états électroniques est déterminé en fonction de l’énergie, nous
devons donc exprimer la densité d’état (E) en fonction de l’énergie E (Voir les calculs
page suivante).

p. 2.11



Il en va de même pour les trous dans la bande de valence.

p. 2.12



Les vecteurs K sont équidistants (comme pour les transformées de Fourier). Il forment
un réseau régulier de maille 2/L.

Le nombre d’états nK dans une surface sphérique de rayon K et d’épaisseur dK est donné
par le volume de cette région (4ꞏK2ꞏdK) divisé par le volume K3 d’une maille du
réseau.

La densité KꞏdK d’états ayant la même norme du vecteur K est obtenue en divisant nK

par le volume du cristal (L3).
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On peut alors utiliser la relation de dispersion correspondant à la bande d’énergie
considérée pour remplacer mathématiquement la norme K par l’énergie E.

Le cas d’une bande de conduction isotrope est considéré dans l’équation ci-dessus.

La densité d’état est proportionnelle à la racine de l’énergie exprimée à partir du
minimum de la bande.
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Dans les cas généraux tridimensionnels, avec des bandes anisotropes à plusieurs minima,
une expression similaire est obtenue.

- Pour la bande de conduction: La densité d’état reste proportionnelle à la racine de
l’énergie exprimée à partir du minimum de la bande.

- Pour la bande de valence: La densité d’état est proportionnelle à la racine de
l’énergie exprimée à partir du maximum de la bande.

Un nouveau paramètre: la masse effective « density of state » m*dos doit être définie à
partir des masses effectives. Ce paramètre est inclus dans la table de résumé en fin du
script A.

Remarque: Des couches très fines (quelques nanomètres) permettent de créer des
structures bidimensionnelles (quantum wells), unidimensionnelles (quantum wires) voir
même des boîtes à électrons (quantum dots). Dans ces cas, la densité d’état ne suit plus la
loi en racine de l’énergie.

p. 2.15
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Nous commençons par calculer le taux (la probabilité) d’occupation des états
électroniques. À basse énergie, les états sont tous occupés (F(E)=1). À haute énergie le
taux d’occupation diminue suivant la loi exponentielle de Boltzmann.

Le taux d’occupation pour les électrons est donné par la probabilité de Fermi-Dirac
Fc(E). Elle contient un seul paramètre, l’énergie de Fermi EF, qu’il faudra déterminer.

Pour les trous: un trou est une place électronique inoccupée. La probabilité Fv(E) qu’un
trou occupe un niveau électronique est donc égale à la probabilité 1-Fc(E) qu’un électron
ne s’y trouve pas. Ce taux d’occupation des trous est aussi uniquement déterminé par
l’énergie de Fermi EF.

p. 2.17



La probabilité de Fermi-Dirac pour les électrons est représentée ci-dessus. À température
nulle tous les niveaux possibles au-dessous de l’énergie de Fermi sont occupés et tous les
niveaux au-dessus de EF sont vides. En élevant la température, une zone de transition
apparaît dans laquelle le taux d’occupation baisse graduellement de 1 à 0. Cette zone de
transition s’élargit en augmentant la température.

L’énergie de Fermi EF correspond à un taux d’occupation de ½. Au-dessous de l’énergie
de Fermi, les états sont majoritairement occupés (F(E) > ½), au-dessus de EF les états
sont majoritairement vides (F(E) < ½).

p. 2.18
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L’équation ci-dessus représente le principe général pour le calcul des concentrations de
porteurs libres.

La densité d’états (E) correspond au nombre d’états électroniques (de fonction d’onde)
possibles par volume de cristal et par intervalle d’énergie dE. En multipliant cette densité
par le taux d’occupation F(E) et par le nombre de spins possibles (2 pour l’électron), on
obtient la concentration de porteurs dans l’intervalle d’énergie dE.

La concentration n d’électrons libres est obtenue en intégrant le tout sur la bande de
conduction. La concentration p de trous est obtenue de façon similaire mais en intégrant
sur la bande de valence.

Nous allons maintenant calculer les valeurs de (E) et de F(E) pour être à même de
déterminer les concentrations n et p d’électrons libres et de trous respectivement.
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Nous avons maintenant tous les éléments pour exprimer les concentrations n et p de
porteurs libres. En appliquant le principe général du calcul des concentrations et en
introduisant les expressions de la distribution de Fermi et de la densité d’états, les 2
équations ci-dessus sont obtenues. Elles contiennent une intégrale à résoudre
numériquement.

Nous n’avons que deux équations, mais 3 inconnues: n, p et EF. L’énergie de Fermi EF

doit encore être déterminée. Pour cela nous devrons considérer la neutralité du semi-
conducteur.

Avant de résoudre ces équations, nous allons simplifier les intégrales ci-dessus. Pour
cela, la position de l’énergie de Fermi dans la bande interdite doit être estimée.
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Afin de mieux comprendre l’influence de l’énergie de Fermi EF, il est intéressant de
résoudre graphiquement les deux intégrales de la page précédente. Considérons des
masses effectives identiques pour les électrons et les trous. Nous devons multiplier la
densité d’état (E) par le taux d’occupation F(E) et intégrer le tout. Le résultat
correspond aux surfaces hachurées sur les graphiques ci-dessus.

a) Si l’énergie de Fermi est au milieu du gap: la solution est symétrique et la densité n
est égale à la densité p.

b) Si l’énergie de Fermi s’approche de la bande de conduction: la concentration n
augmente fortement alors que la concentration p des trous tend vers zéro.

c) Si l’énergie de Fermi s’approche de la bande de valence: la concentration p augmente
fortement alors que la concentration n tend vers zéro.

Les constatations ci-dessus vont nous permettre de déterminer l’énergie de Fermi (seul
paramètre encore inconnu dans notre calcul).

p. 2.22
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Dans un semi-conducteur intrinsèque, les porteurs sont générés thermiquement.
Lorsqu’un électron est créé dans la bande de conduction, un trou apparaît dans la bande
de valence. Le semi-conducteur reste donc toujours neutre.

Cette condition de neutralité implique que n=p=ni. (ni correspond à la concentration
intrinsèque de porteurs libres). Pour des électrons et des trous de même masse effective,
l’énergie de Fermi doit donc être située au milieu du gap !

En considérant des électrons et des trous de masses différentes, nous devons résoudre la
condition de neutralité en exprimant n et p par leurs expressions intégrales. EF peut ainsi
être déterminé.

Dans tous les cas réels, EF reste situé très proche du milieu du gap pour un semi-
conducteur intrinsèque.

Remarques:

a) Il est possible de résoudre la condition de neutralité graphiquement (graphique de
Shockley) en dessinant les fonctions n(EF) et p(EF) sur le même graphique.

b) Il est judicieux d’approximer la fonction de Fermi-Dirac par l’approximation de
Boltzmann. Ainsi les intégrales deviennent analytiquement solvables et de très
bonnes expressions analytiques peuvent être trouvées pour les semi-conducteurs
intrinsèques.

 Nous allons suivre maintenant ce chemin !
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Lorsque l’énergie de Fermi est dans la zone interdite, le calcul des concentrations ne
demande que de considérer la queue de la fonction de Fermi-Dirac. C’est en particulier le
cas lorsque l’énergie de Fermi est proche du milieu du gap (semi-conducteur
intrinsèque).

Cette queue peut s’approximer par la fonction de Boltzmann. Nous allons l’introduire
dans les intégrales. Nous pourrons alors les résoudre analytiquement.
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L’approximation de Boltzmann est introduite dans les équations des concentrations n et
p. L’intégrale est résolue analytiquement et deux expressions très simples sont trouvées
pour les concentrations n et p.

Les densités effectives d’états Nc et Nv ne dépendent que de la température et du matériel
semi-conducteur lui-même. La loi d’action de masse permet de déterminer la
concentration intrinsèque de porteurs ni. Cette concentration ne dépend aussi que de la
température et du matériel semi-conducteur lui-même. Pour un semi-conducteur
intrinsèque n=p=ni. Pour un tel matériel, les concentrations de porteurs peuvent donc être
approximées analytiquement par des expressions simples.

p. 2.26
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Interprétation:

Les densités effectives d’états peuvent être interprétées comme suit:

- Les bandes continues d’états de valence et de conduction sont remplacées par un
système à deux niveaux d’énergie, avec des densités d’états données par Nv et Nc

respectivement.

- De plus, la distribution de Fermi-Dirac est elle aussi remplacée par la distribution de
Boltzmann.
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Ce transparent résume la situation pour les semi-conducteurs intrinsèques. Nous pouvons
supposer l’énergie de Fermi EF proche du milieu du gap et remplacer la distribution de
Fermi-Dirac par celle de Boltzmann. Les intégrales peuvent ainsi être résolues.

La condition de neutralité peut maintenant être résolue et l’énergie de Fermi déterminée.
Pour cela nous entrons les approximations pour n et p dans l’expression n=p=ni.

L’énergie de Fermi contient un premier terme qui correspond au milieu du gap. Le
second terme est une petite correction due aux masses différentes des trous et des
électrons libres. Il est souvent négligeable. Par exemple, pour le silicium à température
ambiante ce terme vaut 11meV seulement.

La valeur de ni s’exprime facilement à partir de la loi d’action de masse ni
2=np.

p. 2.29



Le graphique donne les valeurs de la concentration intrinsèque ni pour différents
matériaux.

Il est facile de retenir pour le silicium à température ambiante: ni=1010cm-3.

Nous constatons:

a) Ce graphique reflète la loi de Boltzmann (que nous avons introduite pour
approximation). Si la température s’élève, il y a exponentiellement plus
d’électrons/trous générés thermiquement. Donc la concentration de porteurs ni

augmente exponentiellement (linéairement dans un graphique logarithmique!).

b) Le germanium a un gap plus petit, sa valeur de ni est plus élevée. Là aussi cela se
comprend en terme d’une augmentation de la génération thermique d’électrons/trous.

Ces deux constatations peuvent directement être déduites de la loi physique:

Nous avons jusqu’ici travaillé avec des semi-conducteurs intrinsèques, c.-à-d. où le
dopage ne jouait aucun rôle pour la concentration de porteurs. Cette concentration
dépendait alors uniquement de la génération thermique de la bande de valence à la bande
de conduction.

kTE
vci

geNNn 2/
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Nous allons maintenant introduire dans le cristal une petite quantité (par rapport au
nombre d’atomes du cristal) d’atomes dopants. Ces dopants sont des éléments bien
spécifiques, choisis pour libérer un électron (donneur) ou pour capturer un électron
(accepteur).

Dans le cas des donneurs dans le silicium: un atome « étranger », contenant un électron
et une charge dans le noyau de plus que le silicium, est introduit à la place d’un atome de
silicium. Il s’agit donc de remplacer le silicium (groupe IV) par un atome du groupe V
(As par exemple).

L’électron supplémentaire a un état atomique d’énergie Ed juste inférieure à la bande de
conduction Ec. Maintenant une excitation thermique permet facilement d’ioniser cet
atome et de générer un électron libre dans la bande de conduction. Le saut énergétique à
effectuer est bien inférieur au gap, donc ce processus d’ionisation est très efficient. Il n’y
a pas de génération de trous libres dans la bande de valence. Par contre une charge
positive fixe, correspondant à la charge du noyau de l’atome donneur, apparaît. Le
matériel reste neutre. Il faudra par la suite toujours considérer les atomes ionisés dans le
calcul des charges dans un semi-conducteur.
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Dans le cas des accepteurs dans le silicium: un atome « étranger », contenant un électron
et une charge dans le noyau de moins que le silicium, est introduit à la place d’un atome
de silicium. Il s’agit donc de remplacer le silicium (groupe IV) par un atome du groupe
III (B par exemple).

L’électron manquant a un état atomique d’énergie Ea juste supérieure à la bande de
valence Ev. Maintenant une excitation thermique permet facilement d’ioniser cet atome
et de générer un trou dans la bande de valence. Le saut énergétique à effectuer est bien
inférieur au gap, donc ce processus d’ionisation est très efficient. Il n’y a pas de
génération d’électron libre dans la bande de conduction. Par contre une charge négative
fixe, correspondant à la charge de l’électron capturé, apparaît. Le matériel reste neutre. Il
faudra par la suite toujours considérer les atomes ionisés dans le calcul des charges dans
un semi-conducteur.
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Le tableau périodique des éléments permet de déterminer quels atomes peuvent servir de
dopants (donneurs ou accepteurs) pour un semi-conducteur.

Il ne donne par contre pas l’énergie d’ionisation de ces dopants.
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Les graphiques ci-dessus permettent de choisir les dopants et de connaître leur énergie
d’ionisation, par rapport à la bande de valence ou de conduction. Ils sont à mettre en
relation avec le tableau périodique des éléments de la page précédente.

Pour le silicium (groupe IV), les accepteurs traditionnels sont du groupe III. Les
donneurs sont du groupe V.

Dans le GaAs, semi-conducteur composé du groupe III et V, les accepteurs peuvent soit
avoir un électron en moins que le Ga ou que le As, suivant quels atomes ils remplacent
dans le cristal. Les accepteurs remplaçant le Ga sont du groupe II, ceux remplaçant le As
sont du groupe IV. Idem pour les donneurs, ceux remplaçant le Ga sont du groupe IV,
ceux remplaçant le As du groupe VI.

Remarque: Le silicium ou le carbone sont soit accepteurs (à la place du As) soit donneurs
(à la place du Ga).
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Le schéma de bande, développé pour les semi-conducteurs intrinsèques, doit maintenant
être complété pour tenir compte des dopants.

Les donneurs sont des niveaux juste sous la bande de conduction. Non-ionisés, ils
contiennent un électron mais leur charge totale est nulle car le noyau a une charge
positive en trop. Après ionisation, ils libèrent un électron dans la bande de conduction.
On parle de semi-conducteur dopé n. Le donneur lui-même est une charge positive fixe
après ionisation.

Les accepteurs sont des niveaux juste dessus la bande de valence. Non-ionisés, ils
contiennent un trou mais leur charge totale est nulle car le noyau a une charge positive
manquante. Après ionisation, ils capturent un électron et libèrent ainsi un trou dans la
bande de valence. On parle de semi-conducteur dopé p. L’accepteur lui-même est une
charge négative fixe après ionisation.
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Comme dans les semi-conducteurs intrinsèques, nous devons déterminer la densité
d’états et le taux d’occupation pour les états donneurs et accepteurs afin de déterminer la
densité d’atomes dopants ionisés.

La densité d’état est simple à calculer. Elle correspond au nombre d’atomes dopants NA

ou ND implantés dans le cristal.

Le taux d’occupation est donné par les équation ci-dessus pour FD et FA. Elles sont une
adaptation de la distribution de Fermi-Dirac. Elles permettent d’exprimer la densité de
dopants ionisés en multipliant la densité d’atomes dopants implantés par (1-FD)
respectivement (1-FA).

Remarques:

1) Ces équations ne servent que dans le phénomène de « freeze-out » dans les semi-
conducteurs à basse température (voir ci-après). À température ambiante et à haute
température la ionisation est complète et nous pouvons approximer:

2) La probabilité de Fermi-Dirac pour les dopants tient compte de la dégénérescence.
Chaque donneur peut libérer un seul électron mais de deux spins différents
(dégénérescence de 2, ce qui explique le facteur ½). Chaque accepteur peut prendre
un seul électron mais de deux spins différents et sur deux bandes différentes (heavy
hole et light hole). La dégénérescence est de 4, ce qui explique le facteur ¼.

D DN N 
A AN N 
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Nous allons décrire le calcul des concentrations de porteurs libres n et p dans un semi-
conducteur extrinsèque (dans lequel le dopage est un facteur dominant).

Le principe de calcul est exactement le même que celui dans un semi-conducteur
intrinsèque.

La densité d’états (E) correspond au nombre d’états électroniques (de fonction d’onde)
possibles par volume de cristal et par intervalle d’énergie dE. Dans les bandes de valence
et de conduction, elle est inchangée par rapport au calcul pour les semi-conducteurs
intrinsèques. Seul des niveaux d’énergie sont introduits dans le gap (aux énergies ED et
EA) pour décrire les dopants. En multipliant cette densité (E) par le taux d’occupation
F(E) et par le nombre de spins possibles (2 pour l’électron), on obtient la concentration
de porteurs dans l’intervalle d’énergie dE.

La concentration n d’électrons libres est obtenue en intégrant le tout sur la bande de
conduction. La concentration p de trous est obtenue de façon similaire mais en intégrant
sur la bande de valence.

Si comme sur les figures ci-dessus, la structure est dopée n, nous verrons que l’énergie de
Fermi se rapproche de la bande de conduction. Si elle est dopée p, l’énergie de Fermi se
rapprocherait de la bande de valence.
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Le dopage influence uniquement la position du niveau de Fermi EF. Si le matériel est
dopé n, le niveau EF s’approche de la bande de conduction. Si le matériel est dopé p, le
niveau EF s’approche de la bande de valence.

Les intégrales à résoudre ou à approximer pour calculer les concentrations de porteurs
libres n et p dans le cas extrinsèque (dopé) sont rigoureusement identiques au cas
intrinsèque (non dopé).

p. 2.41
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Nous avons vu que le dopage n’influence que la position du niveau de Fermi. Nous
devons donc maintenant calculer cette valeur en tenant compte du dopage. Pour cela le
raisonnement est le même que dans le cas intrinsèque. Nous considérons que le matériel
reste neutre. Les noyaux des atomes dopants ionisés représentent des charges fixes que
nous devons introduire dans la condition de neutralité. La somme des électrons libres n et
des accepteurs ionisés forme la charge négative. Elle doit être égale à la charge positive
formée par les trous p et les donneurs ionisés.

Le « graphique de Shockley » permet de résoudre cette condition. Il représente les
différentes concentrations dans une échelle logarithmique en fonction de l’énergie de
Fermi. Les charges négatives sont en rouge/rose, les charges positives en bleu.
L’intersection des deux courbes donne la solution pour l’énergie de Fermi et pour les
concentrations n et p. Dans le cas du graphique ci-dessus, un dopage p est représenté
(NA>ND). Le niveau de Fermi est plus proche de la bande de valence.

Si l’approximation de Boltzmann peut remplacer la distribution de Fermi-
Dirac et la courbe n est une droite. De même si la courbe p est une droite.

Si les donneurs sont tous ionisés. est constant.

Si les accepteurs sont tous ionisés. est constant.

kTEE FD 3

kTEE AF 3

kTEE Fc 3
kTEE VF 3

AN


DN

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La variation des concentrations de porteurs libres n et p en fonction de le température
peut être comprise par l’analyse des effets physiques dominants. Par exemple, analysons
le cas d’un silicium dopé n.

a) À température nulle: Aucun donneur n’est ionisé. La bande de conduction est vide. La
concentration n tend vers zéro.

b) À basse température: Certains donneurs commencent à être ionisés. La concentration
n s’élève. Au dessus d’une certaine température (< 150 0K) tous les donneurs sont
ionisés. Cette zone s’appelle la région de « freeze-out », en refroidissant fortement
sous la température ambiante les électrons libres gèlent et sont capturés par les
donneurs.

c) Dans une vaste zone de températures autour de la température ambiante: Tous les
donneurs sont ionisés. La concentration n ne varie plus ! C’est dans cette « région
extrinsèque » que la plupart des composants électroniques travaillent. Les
concentrations de porteurs majoritaires sont constantes, cela permet le développement
d’une électronique peu dépendante de la température.

d) À températures élevées: Les donneurs sont tous ionisés, mais en plus la génération de
bande de valence à bande de conduction devient possible et même dominante. La
concentration n augmente à nouveau. Le comportement du semi-conducteur devient
intrinsèque.
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Lorsque le dopage est très élevé, la structure de bande se déforme. Comme esquissé sur
la figure de droite, la bande de conduction se prolonge par « une queue de bande »
formée par les états dopants en grand nombre. L’énergie nécessaire pour ioniser les
dopants devient donc nulle, car ils sont maintenant dans la bande elle-même. La zone de
freeze-out disparait et la concentration de porteurs reste constante même à très basse
température.

Les composants fortement dopés peuvent donc fonctionner même proche du zéro absolu.
Les applications sont par exemple dans le domaine spatial. Les transistors MOS peuvent
contenir exclusivement des zones à très fort dopage et sont donc tout à fait compatibles
avec ces applications.
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Les graphiques ci-dessus donnent l’énergie de Fermi en fonction de la température et du
dopage. Ces courbes sont les solutions de la condition de neutralité (et du graphique de
Shockley).

À basse température, les dopants ne sont plus ionisés (« freeze-out effect »). L’énergie de
Fermi est située entre l’énergie des dopants et la bande. Plus la température augmente et
plus l’énergie de Fermi s’approche du milieu du gap. Le semi-conducteur tend vers un
comportement intrinsèque où la génération thermique d’électron/trou de la bande de
valence à la bande de conduction est dominante. À même température, plus le dopage est
élevé et plus l’énergie de Fermi est proche de la bande correspondante.

Remarque: En augmentant la température le gap diminue légèrement. Les figures en
tiennent compte.
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L’approximation de Boltzmann, introduite dans les intégrales, permet de résoudre
analytiquement les concentrations n et p. Nous obtenons les expressions de gauche ci-
dessus. Elles relient n et p aux densités effectives d’états Nc et Nv et à la différence entre
l’énergie de Fermi et le bord des bandes.

Comme pour le cas intrinsèque, le problème se résume à un système à deux états. Les NC

états à disposition dans la bande de conduction sont peuplés par les électrons libres selon
la distribution de Boltzmann (fonction exponentielle décroissante dépendante de la
différence entre EC et EF). De même, les NV états à disposition dans la bande de valence
sont peuplés par les trous selon la distribution de Boltzmann (fonction exponentielle
décroissante dépendante de la différence entre EF et EV).

Cette formulation indique que la concentration n d’électrons libres augmente et tend vers
sa valeur maximale NC lorsque EF s’approche de EC. De même, la concentration p de
trous augmente et tend vers sa valeur maximale NV lorsque EF s’approche de EV.
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Il est souvent préférable d’exprimer les concentrations n et p en fonction des paramètres
intrinsèques du matériel ni et Ei. (Par exemple pour le silicium à température ambiante
ni=1010cm-3 et Ei est au milieu du gap). Les équations de droite sont équivalentes à celles
de la page précédente. Pour s’en convaincre il suffit d’introduire les expressions pour ni

(à gauche) dans les équations de droite !

Cette deuxième formulation se réfère aux valeurs ni et Ei sans dopage (intrinsèque).
Lorsque EF est supérieur à Ei, la concentration n d’électrons libres augmente
exponentiellement à partir de ni. La concentration p de trous diminue pour maintenir le
produit np constant (loi d’action de masse np=ni

2).

De même, lorsque EF est inférieur à Ei, la concentration p augmente exponentiellement à
partir de ni. La concentration n diminue pour maintenir le produit np constant.

Les expressions de droite peuvent être réécrites pour exprimer l’énergie de Fermi en
fonction des paramètres intrinsèques et des concentrations n et p. Elles deviennent:
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De façon générale, le calcul des concentrations utilisent les intégrales de base. Elles ne
sont pas solvables analytiquement.

Dans une large majorité de cas pratiques deux approximations peuvent être introduites:

1) Le dopage est suffisamment faible pour que le semi-conducteur reste non-dégénéré.
L’énergie de Fermi n’est pas trop proche des bandes de conduction ou de valence.
Dans ce cas (comme pour les semi-conducteurs intrinsèques) l’approximation de
Boltzmann peut s’appliquer. Elle permet de résoudre les intégrales de façon
analytique. Les solutions sont identiques au cas intrinsèque. La loi d’action de masse
s’applique toujours. De plus, il est parfois pratique d’exprimer n et p en fonction des
valeurs intrinsèques ni et Ei et non plus en fonction de Nc et Nv.

Remarque: Par rapport au cas intrinsèque, l’énergie de Fermi doit être modifiée !

2) Dans une large zone de températures autour de la température ambiante, la ionisation
des dopants est complète.
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Il arrive parfois que deux zones d’implantation se chevauchent. Deux sortes de dopants
sont donc présents dans le semi-conducteur (graphique de gauche). Il y a alors
compensation de dopage. Par exemple, les accepteurs minoritaires capturent les
électrons libérés par les donneurs. Seuls les donneurs en surnombre fournissent des
électrons à la bande de conduction. Il en résulte n dopage effectif donné par ND-NA.
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Ce tableau résume le calcul des concentrations de porteurs libres dans les semi-
conducteurs non-dégénérés (approximation de Boltzmann valable) à température
ambiante (les dopants sont tous ionisés).

Les valeurs ni et Ei sont des paramètres intrinsèques au matériel considéré. Ils
correspondent respectivement à la concentration de porteurs libres n et p et à l’énergie de
Fermi dans le matériel non-dopé.

Les majoritaires sont donnés par la concentration de dopants ND ou NA

respectivement.

Les minoritaires sont donnés par la loi d’action de masse.

L’énergie de Fermi, exprimée à partir de Ei, est donnée par:
kTln( ND,A/ni )
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Ce tableau résume le calcul des concentrations de porteurs libres dans les semi-
conducteurs non-dégénérés (approximation de Boltzmann valable) à température
ambiante (les dopants sont tous ionisés).

Les valeurs ni et Ei sont des paramètres intrinsèques au matériel considéré. Ils
correspondent respectivement à la concentration de porteurs libres n et p et à l’énergie de
Fermi dans le matériel non-dopé.

Les majoritaires sont donnés par la concentration de dopants ND ou NA

respectivement.

Les minoritaires sont donnés par la loi d’action de masse.

L’énergie de Fermi, exprimée à partir de Ei, est donnée par:
kTln( ND,A/ni )
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La figure ci-dessus montre le profil schématisé de dopage au centre d’une photodiode.
Ce profil est modélisé par trois zones à dopage constant, dopées respectivement avec du
bore pour le substrat (3), du phosphore pour (2) et du bore pour (1). À température
ambiante (300 K) et en supposant la ionisation complète des impuretés, trouvez en
utilisant l’approximation de Boltzmann la concentration d’électrons et de trous dans les
trois zones.
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Ceci est un résumé ciblé du chapitre 2. Le niveau de Fermi est déterminé par la condition
de neutralité dans un milieu homogène à l’équilibre.

Dans un semi-conducteur intrinsèque (non-dopé), les électrons libres et les trous sont en
même concentration. Les deux sortes de charges n et p sont mobiles. L’énergie de Fermi
est au milieu du gap.

Dans un semi-conducteur de type p, les trous sont les charges libres majoritaires. Les
atomes accepteurs ionisés sont des charges fixes négatives, réparties de façon homogène
dans tout le composant. La structure est neutre électriquement. L’énergie de Fermi s’est
rapprochée de la bande de valence.

Dans un semi-conducteur de type n, les électrons sont les charges libres majoritaires. Les
atomes donneurs ionisés sont des charges fixes positives, réparties de façon homogène
dans tout le composant. La structure est neutre électriquement. L’énergie de Fermi s’est
rapprochée de la bande de conduction.
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Une expérience simple permet d’illustrer les phénomènes décrits dans ce chapitre.
Plaçons les trois semi-conducteurs homogènes de la page précédente dans le champ
électrique produit entre les plaques d’un condensateur chargé. Sous l’effet du champ
électrique les porteurs libres seront concentrés dans certaines régions, ils seront attirés ou
repoussés suivant leur charge. Par contre les charges fixes, composées par les atomes
dopants ionisés ne bougeront pas. Il en résulte l’apparition de zones de charges. On parle
de zones d’accumulation là où les porteurs libres sont accumulés, leur charge totale est
alors dominante. Dans les zones de déplétion, les porteurs libres sont partis, la charge des
atomes dopants ionisés est alors dominante.

L’accumulation des charges mobiles est compensée par deux autres effets: premièrement
les zones de charges génèrent un champ électrique opposé au champ du condensateur,
dans la zone centrale neutre le champ total est nul. Deuxièmement, la diffusion tend à
homogénéiser les concentrations de porteurs libres. Un équilibre se met en place.

Le but de ce chapitre est de décrire physiquement et mathématiquement les processus
impliqués dans l’expérience ci-dessus.
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Dans ce cours nous analysons les concentrations de charges, les courants et les champs
électriques dans les semi-conducteurs. Deux sortes de courants vont être utilisés: les
courants de drift produits par les champs électriques et les courants de diffusion
provoqués par les gradients de concentration de porteurs libres.

Comme esquissé ci-dessus, il existe d’autres sources de courants dans les semi-
conducteurs:

1) Un champ magnétique B appliqué sur une plaque conductrice (ou semi-conductrice)
provoque une concentration de porteurs sur les bords. Ils sont responsables de
l’apparition d’une tension de Hall.

2) Un gradient de température accumule les porteurs libres dans les régions froides. En
effet, les charges libres à température plus élevée bougent plus par mouvement
brownien. Ils occupent donc une plus grande place et leur densité est plus faible. Dans
certains cas, une variation de la mobilité en température peut compenser cet effet,
voire même provoquer une accumulation de porteurs libres vers les zones chaudes.
Ces effets sont utilisés dans les thermopiles pour détecter la chaleur.

Nous n’utiliserons pas ces courants pour ce cours. Ils peuvent cependant être intéressants
pour certains composants: capteurs Hall, magnéto-transistors, …
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Le premier courant que nous allons décrire est provoqué par les champs électriques sur
les porteurs libres n et p.

Le champ électrique provoque, sur une particule de charge q, une force:

Les électrons libres et les trous dans le semi-conducteur subissent cette force et ils sont
accélérés. Ils subissent aussi des collisions qui ont tendance à les freiner. Nous nous
intéressons à déterminer la vitesse moyenne de déplacement des charges libres sous
l’influence du champ électrique.

F q E 
 
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Voyons d’abord comment se comporte une charge libre sans champ électrique.

L’excitation thermique provoque des mouvements aléatoires des charges libres
(mouvement brownien). À la suite de collisions, la particule change de direction et de
vitesse. À l’équilibre thermique, l’énergie cinétique de la particule doit être égale à
l’énergie thermique d’un système à 3 dimensions (3ꞏkT/2). Entre deux collisions une
vitesse thermique moyenne vth assez élevée est atteinte. Dans la structure de bande, les
porteurs forment un nuage isotrope et centré sur le minimum. Son rayon est directement
relié à la vitesse vth.

Le temps séparant deux collisions est typiquement de 1ps. L’ordre de grandeur de la
distance parcourue entre deux collisions est de 20-200 nm. Lors de la traversée d’un
dispositif électronique standard les porteurs subissent donc un grand nombre de
collisions. Il est donc justifié pour un tel composant de considérer les déplacements
moyens.

Sans champ électrique le déplacement moyen est nul, il n’y a donc pas de courant.

Remarque: Les composants extrêmement miniaturisés peuvent éviter les collisions, on
parle alors de « porteurs balistiques ».
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En appliquant un champ électrique sur le semi-conducteur, le mouvement thermique
aléatoire des porteurs reçoit une composante systématique, qui en moyenne ne s’annule
pas. Cette composante s’appelle la vitesse de drift.

La mobilité  est définie comme la constante linéaire reliant, à faible champ électrique,
la vitesse de drift vd au champ électrique E. Elle reflète la facilité avec laquelle un
porteur libre répond à la force électrique et bouge dans le cristal semi-conducteur. Plus le
temps entre deux collisions est long, plus le porteur peut accélérer et augmenter sa
vitesse. Il est donc intuitif de relier physiquement la mobilité et le temps moyen de
parcours libre défini à la page précédente.

Dans le schéma de bande, le nuage de porteurs s’est déplacé sous l’effet du champ
électrique. Il n’est plus centré sur le minimum de la bande. Il est instructif de comparer la
vitesse de drift et la vitesse thermique. Dans la plupart des cas la vitesse de drift est
nettement plus faible que la vitesse thermique. Le déplacement du nuage est faible par
rapport à son rayon. En bonne approximation la distribution de Fermi-Dirac peut toujours
s’appliquer.
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L’idée intuitive que la mobilité et le temps moyen de parcours libre sont reliés peut être
calculée par un modèle simple.

Considérons qu’un porteur a une vitesse nulle après chaque collision et qu’il accélère
ensuite de façon continue sous l’effet d’une force F pendant le temps c. Sa vitesse suit la
courbe en dents de scie représentée sur le graphique ci-dessus. La pente de chaque dent
est l’accélération a=F/m*.

La vitesse moyenne (vitesse de drift) est obtenue au temps c /2. La distance parcourue
est ldrift=½ aꞏc

2.
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Le modèle de la page précédente avait permis d’exprimer la vitesse de drift par:

La force électrique est F=-qꞏE. Elle permet d’exprimer la mobilité en fonction du temps
moyen de parcours libre.

En fonction de la sorte de porteurs (électrons libres ou trous) les expressions ci-dessus
s’appliquent.
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En considérant un seul porteur nous avons exprimé sa vitesse de drift (vitesse moyenne
de déplacement) en fonction du champ électrique appliqué. Les semi-conducteurs
contiennent des densités n et p de porteurs libres. La densité de courant est obtenue en
multipliant la vitesse de drift par la densité de porteurs et par leur charge.

La conductivité des électrons libres et des trous relie directement les courants de drift Jn

et Jp au champ électrique E appliqué. Cette grandeur est reliée à la mobilité et donc au
temps moyen de parcours libre.

Remarque: Dans tous les semi-conducteurs les deux courants de drift existent (celui des
électrons libres et celui des trous). Souvent un des deux courants est dominant.
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Pour le silicium dopé n, chacune des 6 vallées est anisotrope. Mais chacune contient la
même densité d’électrons libres n/6. La conductivité totale est la somme des
conductivités de chaque vallée. Nous pouvons définir une masse effective pour la
conductivité. Elle est isotrope tant que les vallées sont toutes également peuplées.
(Remarque: Ce n’est plus le cas lorsqu’une force mécanique est appliquée sur le silicium.
L’effet piezorésistif est anisotrope). Pour le silicium dopé n nous obtenons:

Pour le silicium dopé p, il y a deux vallées isotropes, mais différemment peuplées. Il faut
pondérer les masses par la concentration de porteurs dans chaque bande hh (heavy hole)
et lh (light hole):

En reprenant les résultats du chapitre 2:
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*
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Dans un morceau de silicium, un stress mécanique induit des transformations des
bandes.

Par exemple pour un stress dans la direction (110):

- Les niveaux des bandes de conductions sont changés. Les 4 bandes dans les
directions x et y montent, alors que les 2 bandes en z descendent. (Seules les
direction positives sont montrées ici par simplicité). Les masses restent inchangées.

- Les niveaux et les masses des bandes de valence varient également.

De telles variations des bandes résultent en des variations importantes des
caractéristiques conductrices du matériau. Un effet de piezorésistance apparaît, la
résistance du matériau dépend fortement du stress mécanique qu’il subit. Les jauges
de contraintes sont basées sur ce principe.
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Le champ électrique E est appliqué aux deux sortes de porteurs, les électrons libres et les
trous. Nous pouvons donc définir un courant de drift total et une conductivité totale en
sommant:

La plus grande des deux conductivités domine.

Il est parfois nécessaire d’exprimer le champ électrique en fonction du courant de drift
total. On utilise alors la notion de résistivité , qui peut s’exprimer en fonction des
conductivités des électrons libres et des trous.

Remarque: La résistivité du matériel le plus conducteur domine.

n p   
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2 phénomènes physiques réduisent la résistance du conducteur en fonction de la
température:

a) La génération de porteurs libres, soit depuis les dopants, soit depuis la bande de
valence. En silicium cela se produit soit à très basses températures (<100K) soit à hautes
températures (>600K).

b) Les impuretés sont vues comme des perturbations par les porteurs. À haute
température, la vitesse du porteur est grande et l’influence de l’impureté diminue
(comme une bille lancée à haute vitesse sur une surface rugueuse). La mobilité des
porteurs augmente.

2 phénomènes physiques (diminuant la mobilité des porteurs) augmentent la résistance
d’un conducteur en fonction de la température

c) Les porteurs entrent en collision avec les vibrations du cristal. Cet effet domine pour
les semi-conducteurs comme le silicium dopé à température ambiante.

d) Les porteurs s’entrechoquent entre eux. Cet effet domine dans les métaux.
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La mobilité, la conductivité et la résistivité sont des grandeurs « ingénieur » qui résument
globalement les propriétés des matériaux mais qui ne décrivent pas les processus
physiques sous-jacents. Nous avons relié ces grandeurs au temps moyen de parcours
libre c.

Nous allons maintenant décrire les causes physiques qui limitent le temps entre les
collisions.

Dans un cristal parfait, les états électroniques représentent des modes vibratoires parfaits
 les porteurs qui occupent ces états ne subissent donc aucune collision. Les causes d’un
temps de parcours libre limité sont à chercher dans les imperfections du cristal. Deux
effets dominent dans des cristaux réels:

a) Les collisions avec les impuretés (« impurity scattering »):

Les impuretés rompent la symétrie et la périodicité du cristal, cela perturbe les états
électroniques et diminue le parcours libre. Les impuretés sont inévitables dans un
cristal (voir fin du chapitre 1). De plus, les atomes dopants sont aussi des impuretés
pour la scattering.

b) Les collisions avec les vibrations du cristal (« phonon scattering »):

Thermiquement les atomes vibrent autour de leur position idéale dans la structure
cristalline. Ces déplacements aléatoires sont aussi des imperfections du cristal. Ils
réduisent le parcours libre pour les porteurs. Plus la température est élevée, plus les
vibrations sont importantes.
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Les deux figures ci-dessus donnent le comportement de la mobilité dans le silicium en
fonction de la température et de la concentration des impuretés (du dopage). La mobilité
est linéairement proportionnelle au temps moyen de parcours libre c.

Nous constatons:

1) Les électrons ont une masse effective plus petite. Ils ont également un temps entre
collisions plus long leur mobilité est plus grande.

2) À faible dopage la phonon scattering domine, elle ne dépend pas du dopage.

3) L’impurity scattering réduit fortement la mobilité à fort dopage.

4) À basse température l’imputity scattering domine, elle diminue avec la température et
la mobilité (à dopage élevé) a tendance à augmenter avec la température.

Remarque:

Comme nous le verrons ci-après, la constante de diffusion D est directement liée à la
mobilité par des constantes physiques. Elle est donc également représentée sur la figure
de droite avec son échelle sur le coté droit.
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Remarque:

Nous avons exprimé la vitesse de drift en fonction du champ électrique par la mobilité.
Cette définition s’applique pour des champs électriques pas trop élevés.

Pour des champs très forts, un phénomène de saturation de la vitesse de drift apparaît.
Cela s’explique par l’apparition à haute vitesse de nouveaux phénomènes de scattering
qui limitent fortement le parcours libre des porteurs.

Pour la plupart des semi-conducteurs, la vitesse de saturation des électrons et des trous
est de l’ordre de 107 cm/s.
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En utilisant un barreau de dimension connue, on peut mesurer la résistance entre les deux
contacts. La résistivité peut être déterminée en tenant compte des paramètres
géométriques.
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Nous avons vu comment un champ électrique peut provoquer des courants de drift sur les
électrons libres et sur les trous. Ces courants Jdrift,n et Jdrift,p font appel à la notion de
mobilité n et p.

Comme dans l’expérience décrite en début de chapitre (silicium entre deux plaques
métalliques), ces courants de drift peuvent créer des zones de charges dans le semi-
conducteur. Nous allons maintenant décrire et exprimer mathématiquement comment les
charges produisent un champ et une tension électrique dans le semi-conducteur.

La tension électrique provoque un potentiel énergétique qui influence sur le niveau
d’énergie dans le schéma de bande du semi-conducteur.
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Pour simplifier, nous allons considérer le cas d’une constante diélectrique  homogène
dans toute la structure.

Une charge ponctuelle produit un champ électrique radial autour d’elle (voir cours de
physique de base). D’une manière générale il est donc évident qu’une zone de charge
produise un champ électrique dans son environnement. Formellement, les équations de
Maxwell permettent de calculer ce champ et le potentiel électrique qui en découle.

Ce slide résume les équations nécessaires pour ce calcul. Un point est spécifique aux
semi-conducteurs dopés. Le calcul de la densité de charge  doit tenir compte de toutes
les charges présentes, mobiles et fixes. Cette densité  contient donc les charges positives
(les trous et les atomes donneurs ionisés) et avec un signe moins les charges négatives
(électrons libres et atomes accepteurs ionisés). Nous obtenons:

Le champ électrique E est relié à la densité de charge par une équation de Maxwell. C’est
une équation différentielle du premier ordre. Le potentiel électrique  est exprimé par
l’équation de Poisson. C’est une équation différentielle du second ordre. Il suffit de
résoudre une de ces deux équations.

Remarque: Dans une structure microélectronique typique, le champ E peut varier de
plusieurs ordres de grandeur, le potentiel électrique  lui ne varie que de quelques volts.
Numériquement, l’équation de Poisson converge souvent mieux.

)(   ad NnNpq
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Le potentiel électrique  calculé par l’équation de Poisson, est associé à une énergie
potentielle du porteur libre (voir cours de physique de base).

Analysons le cas d’une résistance faite en matériau semi-conducteur homogène:

a) Sans champ électrique: il n’y a pas de variation de potentiel. Les porteurs voient tout
le long de la résistance le même schéma de bande.

b) Avec un champ électrique produit par une source de tension V>0.
Pour tenir compte de l’énergie potentielle induite par le potentiel électrique , la
structure de bande devient pentue avec une pente donnée par qꞏE.

Analysons le mouvement des porteurs dans cette structure de bande: les électrons libres
de la bande de conduction se comportent comme des billes qui visent à minimiser leur
énergie, ils se dirigent vers la droite, donc vers le pôle + de la résistance. Les trous,
comme des bulles d’air, remontent vers la gauche et se dirigent vers le pôle – de la
résistance. Pour être plus précis, les électrons accélèrent dans le champ électrique, ils
quittent le fond de la bande et gagnent en énergie cinétique. Ils perdent cette énergie
cinétique par collision et rejoignent le fond de la bande. Le mouvement moyen suit le
fond de la bande. (Les trous ont un comportement similaire dans la bande de valence).

- La différence de hauteur des bandes entre deux points correspond (en négatif) à la
tension électrique entre ces deux points.

- Le gradient des bandes correspond au champ électrique local.

- La courbure des bandes correspond à la densité de charge.
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Dans une structure semi-conductrice au dopage inhomogène (une jonction p/n par
exemple), de forts gradients de concentration sont attendus. Comme une goutte de
colorant dans de l’eau, l’effet de diffusion aura tendance à égaliser les concentrations.
Des courants de diffusion s’installent, ils cherchent à répartir les porteurs uniformément
dans toute la structure.
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Dans une structure au dopage inhomogène, les valeurs NA et ND des concentrations
d’atomes dopants implantés varient sur toute la structure. Nous sommes intéressés par
connaître, non pas les atomes implantés, mais les atomes dopants ionisés NA

- et ND
+.

Pour cela les équations ci-dessus peuvent être appliquées.

Dans la plupart des cas (silicium à température ambiante), nous pouvons admettre une
ionisation complète. Le problème est alors trivial, les atomes dopants implantés sont tous
ionisés !
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Nous pouvons maintenant nous attaquer à dériver une équation décrivant le phénomène
de diffusion. Nous cherchons l’expression d’un courant qui devrait dépendre du gradient
de la concentration des porteurs.

Considérons des électrons libres avec une concentration inhomogène. Ils peuvent
parcourir sans collision une distance lc à leur vitesse thermique vth. Exprimons les
courants qui traversent une plaque située au milieu de cette distance de gauche à droite
j et de droite à gauche j. La différence de concentration provoque un courant résultant
jdif, appelé courant de diffusion. Le même principe est appliqué pour les trous. Nous
obtenons finalement deux courants de diffusion, celui des électrons libres et celui des
trous.

Le modèle ci-dessus permet de relier linéairement le courant de diffusion au gradient de
la concentration.
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La dernière équation de la page précédente permet de relier la constante de diffusion Dn

ou Dp à la vitesse thermique vth et du temps moyen de parcours libre c par:

La vitesse thermique est directement donnée par l’énergie thermique d’un système à un
degré de liberté (1/2ꞏkT). Le temps c peut être exprimé par la mobilité . Nous obtenons
donc les relations d’Einstein ci-dessus. La constante de diffusion est directement
exprimée par la mobilité.

Finalement, le courant de diffusion des électrons libres et celui des trous peuvent être
exprimés simplement par le produit de kT, de la mobilité et du gradient des porteurs.

2
, 2

c
n p thD v


 
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Les deux figures ci-dessus donnent le comportement de la mobilité dans le silicium en
fonction de la température et de la concentration des impuretés (du dopage). La mobilité
est linéairement proportionnelle au temps moyen de parcours libre c.

Nous constatons:

1) Les électrons ont une masse effective plus petite. Ils ont également un temps entre
collisions plus long leur mobilité est plus grande.

2) À faible dopage la phonon scattering domine, elle ne dépend pas du dopage.

3) L’impurity scattering réduit fortement la mobilité à fort dopage.

4) À basse température l’imputity scattering domine, elle diminue avec la température et
la mobilité (à dopage élevé) a tendance à augmenter avec la température.

Remarque:

Comme nous le verrons ci-après, la constante de diffusion D est directement liée à la
mobilité par des constantes physiques. Elle est donc également représentée sur la figure
de droite avec son échelle sur le coté droit.

p. 3.30



Ce slide résume les équations que nous avons développées dans ce chapitre.

1) Le champ électrique provoque un courant de drift sur chaque sorte de porteur libre:
les électrons et les trous. La mobilité  des porteurs est physiquement reliée aux
collisions qu’ils subissent dans le matériel.

2) Les gradients de concentration génèrent des courants de diffusion pour chaque sorte
de porteur (électrons et trous). Les équations d’Einstein permettent d’exprimer la
constante de diffusion par la mobilité.

3) Les zones de charges génèrent des champs électriques dans la structure selon
l’équation de Maxwell. Cette équation peut être remplacée par l’équation de Poisson
décrivant le potentiel électrique .

Remarque: Le potentiel électrique  induit une énergie potentielle qui modifie la
structure de bande:

- La différence de hauteur des bandes entre deux points correspond (en négatif) à la
tension électrique entre ces deux points.

- Le gradient des bandes correspond au champ électrique local.

- La courbure des bandes correspond à la densité de charge.
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Pour une structure semi-conductrice à l’équilibre, le calcul des propriétés électriques
contient 3 inconnues: le champ électrique E (qui peut aussi être remplacé par le potentiel
électrique ), ainsi que les deux concentrations de porteurs n et p.

Elles peuvent être déterminées par la résolution de trois équations:

1) L’équation de Maxwell permet de trouver le champ électrique (on peut aussi résoudre
l’équation de Poisson et déterminer à la place le potentiel électrique , ceci est
numériquement préférable).

2) Dans une structure à l’équilibre le courant total est nul. Nous pouvons donc obtenir
une équation en additionnant les courants de drift et de diffusion des porteurs n et p.
Cette condition est équivalente à dire que l’énergie de Fermi est constante dans toute
la structure (voir chapitre 4: le courant total est donné par le gradient de l’énergie de
Fermi).

3) La loi d’action de masse et valable. Elle permet d’exprimer les minoritaires en
fonction des majoritaires.
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Considérons un silicium dopé N. Nous le contactons en deux points. Une pointe est
froide, l’autre est simplement constituée d’un fer à souder, chauffant fortement le point
de contact. Quel est le signe de la tension V mesurée sur le contact chaud ?

Modèle par analogie: Les porteurs libres se comportent comme des gens sur une piste de
dance. Lorsque d’un côté un groupe « s’échauffe », il prend plus de place.

a) Esquissez la densité de porteurs libres sur une structure à une dimension.

b) Déduisez la densité de charges (zone d’accumulation, neutre et de déplétion).

c) Esquissez le champ électrique.

d) À partir des charges et du champ électrique esquissez le comportement des bandes.

e) Déduisez le signe de la tension V.

f) Que se passe-t-il si le wafer est du P-silicium ?

Remarque: Cette expérience est effectuée pour déterminer simplement le type N ou P
d’un wafer.
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Considérons un thermocouple composé d’un silicium dopé N et d’un silicium dopé P. La
jonction est chauffée. Quel est le signe de la tension V mesurée sur le contact P ?

Modèle par analogie: Les porteurs libres se comportent comme des gens sur une piste de
dance. Lorsque d’un côté un groupe « s’échauffe », il prend plus de place.

Négligez les effets à la jonction NP et ne considérez que chaque région prise séparément
(une région N-Si et une région P-Si).

a) Esquissez, dans chaque région, la densité de porteurs libres due à la différence de
température.

b) Déduisez dans chaque région la densité de charges (zone d’accumulation, neutre et de
déplétion) due à T.

c) Esquissez le champ électrique dans chaque région.

d) La tension V est reliée au champ électrique E par E=-grad(V). Déduisez le signe de la
tension V.

Remarque: Ce thermocouple peut être intégré en technologie CMOS en utilisant par
exemple les contacts N-Poly et P-Poly. Les applications sont pour des senseurs de
température ou des capteurs infrarouges (caméras de thermographie).
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Pour une structure semi-conductrice à l’équilibre, le calcul des propriétés électriques
contient 3 inconnues: le champ électrique E (qui peut aussi être remplacé par le potentiel
électrique ), ainsi que les deux concentrations de porteurs n et p.

Elles peuvent être déterminées par la résolution de trois équations:

1) L’équation de Maxwell permet de trouver le champ électrique (on peut aussi résoudre
l’équation de Poisson et déterminer à la place le potentiel électrique , ceci est
numériquement préférable).

2) Dans une structure à l’équilibre le courant total est nul. Nous pouvons donc obtenir
une équation en additionnant les courants de drift et de diffusion des porteurs n et p.
Cette condition est équivalente à dire que l’énergie de Fermi est constante dans toute
la structure (voir chapitre 4: le courant total est donné par le gradient de l’énergie de
Fermi).

3) La loi d’action de masse et valable. Elle permet d’exprimer les minoritaires en
fonction des majoritaires.

L’équation 1 est générale (Maxwell), elle s’applique même hors équilibre.

Les équations 2 et 3 ne sont pas valables hors équilibre il faut chercher deux équations
plus générales qui s’appliquent dans tous les cas !
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Il est facile de comprendre qu’en appliquant une tension sur un composant électronique,
le courant total n’est plus nul. L’exemple le plus simple est celui d’une résistance ou
d’une diode. L’équation 2 de la page précédente n’est donc pas valable de manière
générale.

Voici un exemple qui illustre la non-validité de la loi d’action de masse (équation 3 de la
page précédente) si on est hors équilibre. Par une illumination forte on génère autant de
trous que d’électrons. Les deux valeurs n et p augmentent donc sous illumination. Leur
produit n’est plus donné par ni

2 !

Lorsque l’illumination s’arrête, la recombinaison des porteurs rétablit l’équilibre.

 Nous devons décrire plus précisément les processus de génération et de
recombinaison pour établir les équations décrivant un système hors équilibre.
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La génération thermique de porteurs libres (un électron sautant de la bande de valence à
la bande de conduction) a été invoquée pour expliquer la conduction dans les semi-
conducteurs intrinsèques (chapitre 2). Nous devons maintenant décrire ces processus de
génération et de recombinaison de paires électron/trou avec plus de détails physiques.

Différents effets peuvent provoquer ces processus:

- la température,

- une illumination optique (photodiode, LED, lasers, …),

- un champ électrique très élevé peut accélérer les porteurs et entraîner un effet de
multiplication avalanche par ionisation,

- …



p. 4.7

Chaque corps émet de la lumière et est en équilibre thermique avec son environnement.
On parle de «corps noir» ou de «black body». Il y a trois interactions possibles entre la
matière et la lumière:

- l’absorption, qui correspond à une génération thermique. Une paire électron/trou peut
être générée directement par un saut électronique de la bande de valence à la bande de
conduction (une liaison de valence est rompue) en absorbant l’énergie du photon. Le
taux Gth,rad de génération est le nombre de paires générées par volume de matériel et
par seconde. Il est proportionnel au nombre d’états occupés (Nv-p) dans la bande de
valence et à celui des états libres (Nc-n) dans la bande de conduction.

- L’émission spontanée et l’émission stimulée correspondant à des recombinaisons
thermiques. Un électron libre de la bande de conduction passe directement dans la
bande de valence (il forme une liaison de valence). Il cède son énergie en émettant un
photon. le taux de recombinaison Rth,rad (nombre de paires électron/trou disparaissant
par volume de matériel et par seconde) est proportionnel au nombre d’états occupés n
de la bande de conduction et au nombre d’états libres p de la bande de valence.



p. 4.8

Nous pouvons définir un taux net de recombinaison U comme la différence entre la
recombinaison et la génération. U est positif si la recombinaison domine, U est négatif si
la génération domine.

1) À l’équilibre thermique: le taux net est nul.

2) Hors équilibre: la recombinaison, proportionnelle au produit nꞏp varie, mais la
génération thermique reste donnée en première approximation par le produit NvꞏNc

qui lui ne varie pas.

 Le taux net de recombinaison radiatif est proportionnel au terme: nꞏp-ni
2.

À l’équilibre, la loi d’action de masse nous dit que ce terme est nul, hors équilibre la loi
d’action de masse ne s’applique plus.



p. 4.9

Aux effets radiatifs peuvent s’ajouter l’impact ionisation et l’effet Auger.

Dans l’impact ionisation, l’électron prend son énergie soit à un électron chaud de la
bande de conduction (effet dominant dans un semiconducteur dopé n), soit à un trou
chaud de la bande de valence (effet dominant si le dopage est p).

Dans l’effet Auger, l’électron donne son énergie soit à un autre électron de la bande de
conduction (effet dominant dans un semiconducteur dopé n), soit à un autre trou de la
bande de valence (effet dominant si le dopage est p). L’électron ou le trou excité va alors
« thermaliser » et libérer cette énergie par de nombreux chocs avec le cristal.



p. 4.10

Nous pouvons définir un taux net de recombinaison U comme la différence entre la
recombinaison et la génération. U est positif si la recombinaison domine, U est négatif si
la génération domine.

1) À l’équilibre thermique: le taux net est nul et cela permet de déterminer la constante
pour l’impact ionisation.

2) Hors équilibre: nous introduisons la constante, déterminée à l’équilibre thermique,
pour décrire la génération..

 Le taux net de recombinaison reste proportionnel au terme: nꞏp-ni
2.

À l’équilibre, la loi d’action de masse nous dit que ce terme est nul, hors équilibre la loi
d’action de masse ne s’applique plus.

Rem:

L’équilibre thermique demande que la somme de toutes les recombinaisons compensent
la somme de toutes les générations:

Ici nous imposons plus, le principe de “detailed balance” qui impose que l’équilibre
s’établit “processus par processus”.

i i
i i

R G 

pour chaque ii iR G
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Par génération ou recombinaison directe, le saut d’énergie à franchir est important. Il
peut être réduit si l’électron peut faire deux sauts en utilisant des pièges (« traps ») situés
dans le gap.

Dans ce cas le taux net de recombinaison thermique indirecte est toujours proportionnel
au terme : nꞏp-ni

2 . (Il est donc nul à l’équilibre.)

Très logiquement, il est aussi proportionnel à la densité de traps NT dans le matériel.

Rem:

- La formule est une simplification de la théorie SRH (Shockley-Read-Hall) décrite
dans la littérature spécialisée.

- On démontre aussi que les traps au milieu du gap sont les plus efficaces.
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 1p radn 

 2
11p A n 

 1p i TN 
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En sommant tous les effets de génération et de recombinaison thermiques, nous obtenons
la formule ci-dessus pour le taux net de recombinaison thermique total Uth.

Nous avons défini  comme le temps de vie des minoritaires. Cela sera expliqué plus loin
dans ce chapitre. Ce temps de vie diminue avec une augmentation de la densité de
porteurs majoritaires et de pièges.

Rem:

- Lorsque l’effet radiative domine: d=rad et le temps de vie des minoritaires est
inversement proportionnel à la densité de majoritaires.

Par exemple pour un dopage n:

- Lorsque l’effet Auger domine, le temps de vie des minoritaires est inversement
proportionnel au carré de la densité de majoritaires.

Par exemple pour un dopage n:

- Lorsque les traps dominent le temps de vie des minoritaires est inversement
proportionnel à la concentration de traps:

Par exemple pour un dopage n:

 1p radn 

 2
11p A n 

 1p i TN 
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1) Optique: En soumettant le matériel à une illumination optique, des photons peuvent
être absorbés et apporter l’énergie nécessaire pour générer une paire électron/trou.
Dans le processus inverse d’émission stimulée, le photon se dédouble par
recombinaison d’une paire électron/trou. Ici les processus d’absorption et d’émission
stimulée sont induits par une source optique spécifique (ils sont donc portés hors
équilibre thermique).

2) Effet avalanche (impact ionisation): Dans un fort champ électrique, les porteurs sont
suffisamment accélérés pour générer des paires électron/trou par impacts ionisation.
Ici cet effet est fortement renforcé (donc porté hors équilibre thermique) par la
présence du champs électrique très élevé.

Tous ces phénomènes sont rassemblés dans un taux net de recombinaison spécifiques
Uspec.

Finalement le taux net total de recombinaison est:

21
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p. 4.16

Une structure semi-conductrice à l’équilibre peut être calculée par les équations du
chapitre 3. Hors équilibre la première équation reste valable. Par contre des courants
totaux existent et la loi d’action de masse n’est plus valide.

Hors équilibre, nous devons introduire les équations de continuité des électrons libres et
des trous.

Nous allons maintenant dériver ces deux équations.
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p. 4.18

Pour dériver les équations de continuité nous utilisons un modèle 1D comme ci-dessus.
L’idée est d’analyser les variations temporelles de concentration des électrons libres
(respectivement des trous) dans un petit volume (en gris sur le dessin).

Le nombre d’électrons dans cette boîte varie:

- par un courant d’électrons entrant dans la boîte,

- par un courant d’électrons sortant de la boîte,

- par génération dans la boîte même,

- par recombinaison dans la boîte.
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Mathématiquement, les phénomènes listés à la page précédente conduisent à la formule
suivante:

Les variations de charges sont égales à la génération moins la recombinaison et moins la
divergence du courant d’électrons. Cela s’applique pour les électrons libres (première
équation) et pour les trous (deuxième équation).

La génération et la recombinaison donnent toujours des paires. Les deux équations
contiennent donc le même taux net total de recombinaison: Uspec+Uth. Il est facile de
vérifier mathématiquement que les deux lois de continuité respectent la conservation des
charges.
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Nous pouvons maintenant résumer le calcul général des propriétés électroniques d’une
structure semi-conductrice hors équilibre.

Elles sont décrites par trois inconnues:

- le champ électrique E,

- la densité d’électrons libres n,

- la densité de trous p.

Ces trois inconnues nécessitent la résolution de trois équations:

- l’équation de Maxwell pour le champ électrique,

- l'équation de continuité pour les électrons libres,

- l’équation de continuité pour les trous.

Les courants de drift:

Les courants de diffusion:

Le taux net de recombinaison thermique:

, ,( ) ( )dif n n dif p pJ kT grad n et J kT grad p     
  

, ,drift n n drift p pj q n E et j q p E    
  
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Le champ électrique E ainsi que les concentrations de porteurs n et p varient de plusieurs
ordres de grandeur sur quelques micromètres dans une structure microélectronique
classique (jusqu’à plus de 15 ordres de grandeur dans une diode p/n !). Il est donc
numériquement difficile de trouver ces inconnues à partir des trois équations de la page
précédente.

1) Le champ électrique peut être remplacé par le potentiel électrique , déterminé par
l’équation de Poisson (voir chapitre 3).

2) Les concentrations n et p peuvent être paramétrisées par une fonction exponentielle,
inspirée par les résultats obtenus lorsque la structure est à l’équilibre (voir chapitre 2).
Hors équilibre, deux « quasi-niveaux » de Fermi distincts sont introduits, un pour les
électrons EF,n et un pour les trous EF,p. Ces grandeurs ne varient que de quelques eV
sur une structure typique.

La loi d’action de masse est modifiée, le produit nꞏp dépend exponentiellement de l’écart
entre les quasi-niveaux de Fermi.
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Les quasi-niveaux de Fermi permettent de réécrire les courants d’électrons libres jn et de
trous jp.

Pour chaque sorte de porteur (électrons ou trous), le courant est la somme du courant de
drift et du courant de diffusion. Dans le courant de drift, le champ électrique E est
exprimé par le gradient du potentiel électrique . Dans le courant de diffusion, le
gradient de la concentration fait intervenir le gradient du quasi-niveau de Fermi et aussi
du potentiel électrique .

Au final:

Le courant total pour une sorte de porteur est proportionnel à la mobilité, à la
concentration et au gradient du quasi-niveau de Fermi de ce porteur.



Un modèle général des semiconducteurs contient 3 inconnues: le champ électrique E et
les concentrations de porteurs n et p. Il faut donc trouver 3 équations.

Considérons une sphère:

1) Les charges produisent un champ électrique radial, c’est une des équations de
Maxwell

2) La variation temporelle de la densités d’électrons libres dans cette sphère est donnée
par la génération G, moins la recombinaison R et moins la différence entre le courant
d’électrons sortants et ceux entrant dans la sphère. Cette différence est
mathématiquement donnée par la divergence des courants d’électrons libres. On
obtient ainsi l’équation de continuité des électrons libres.

3) Le même raisonnement conduit à l’équation de continuité des trous. Elle contient la
même génération G et recombinaison R, mais la divergence prote maintenant sur les
courants de trous.

Rem:

Les effets physiques (drift, diffusion, mobilité, chocs entre particules, Auger, …) sont
«cachés» sous les valeurs des courants Jn, Jp et de G et R.
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Les structures semi-conductrices hors équilibre sont décrites par trois inconnues:

- le potentiel électrique ,

- le quasi-niveau de Fermi des électrons libres EF,n,

- le quasi-niveau de Fermi des trous EF,p.

Ces trois inconnues nécessitent la résolution de trois équations:

- l’équation de Poisson pour le potentiel électrique,

- l’équation de continuité pour les électrons libres,

- l’équation de continuité pour les trous.

Les courants d’électrons:

Les courants de trous:

Le taux net de recombinaison thermique:
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p. 4.28

Remarque:

Pour le calcul des schémas de bande, nous allons toujours admettre que le taux de
recombinaison net est nul aux contacts sur la structure considérée. Cela signifie que les
quasi-niveaux de Fermi des électrons et des trous coïncident aux contacts.



Comme premier exemple, considérons un semi-conducteur dopé n, homogène et à
l’équilibre thermique.

p. 4.30



p. 4.31

Remarques:

1) En acquérant une énergie supérieure à l’énergie du vide, l’électron peut quitter le
matériel (métal, semi-conducteur ou isolant).

2) Nous rapportons le potentiel  à l’énergie du vide et calculons ensuite les bandes à
partir des paramètres du matériel (affinité, gap, dopage). Cette façon de faire est
également correcte pour des structures contenant des matériaux semi-conducteurs
différents (hétérojonctions) ou des métaux (jonctions Schottky).



p. 4.32

Une jonction semi-conductrice (un matériel avec des dopages différents à gauche et à
droite) doit être connectée à des contacts métalliques identiques (fils de cuivre par
exemple) pour être mesurée. Il y a donc en tout trois jonctions CA, AB et BD, toutes
différentes.

a) À l’équilibre:

Des champs électriques internes existent, ils plient les bandes et provoquent un
courant de drift exactement opposé au courant de diffusion (voir jonction N+/N,
chapitre 3). Il y a donc un potentiel (tension électrique) interne appelé « potentiel de
built-in » entre les points A et B.

Il y a aussi un potentiel interne dans les contacts CA et BD, de sorte que la tension
électrique V externe, mesurée entre les points CD est nulle. L’énergie de Fermi est
constante dans toute la structure, y compris dans les fils de contact.

b) Hors équilibre:

Une tension électrique externe V non-nulle est appliquée. Elle correspond à un saut
entre les niveaux de Fermi des contacts C et D. Si les contacts sont « bons »
(ohmiques et peu résistifs, voir chapitre 5), le niveau de Fermi reste constant dans les
contacts. La tension électrique externe V est directement appliquée comme un saut
des niveaux de Fermi sur la jonction interne AB.

Le potentiel interne (le saut des bandes entre A et B) est maintenant la somme du
potentiel de built-in et de la tension externe V.



Considérons la structure de bande simplifiée: nous ne regardons que l’énergie du vide
Evac et l’énergie de Fermi EF.

Pour la structure à l’équilibre thermique, l’énergie de Fermi est horizontale, mais il y a
une tension de built-in sur l’énergie du vide. Cette tension est interne mais bien réelle.

Supposons que nous voulions mesurer cette tension avec un voltmètre.
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Pour mesurer avec un voltmètre nous devons ajouter deux contacts (zones grisées) avec des
fils de cuivre. Cela impose deux autres tension de built-in.

L’ensemble de la structure (les deux fils de cuivre et le semi-conducteur) est à l’équilibre
thermique. L’énergie de Fermi est donc horizontale partout. L’énergie du vide est
simplement déterminée par la work fonction qm. L’énergie du vide doit donc être à la
même hauteur des deux côtés.

Vu de l’extérieur, il n’y a aucune tension (différence d’énergie) sur l’énergie du vide !

 La somme des trois tensions de built-in doit être nulle !
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Avec une tension externe V (négative) appliquée sur le côté gauche, l’énergie de vide et
l’énergie de Fermi sont montées de –qV.

Si le contact est « bon » (il reste à définir comment le faire, voir « contacts ohmiques »,
chapitre 5 du cours), il n’y a pas de chute de tension sur le contact, donc toute la zone
grise est également montée de –qV. La tension externe se reporte entièrement sur
l’intérieur du semi-conducteur.

 L’énergie de Fermi fait un saut de –qV.

 L’énergie du vide fait elle un saut de q(Vbi-V).

Nous pouvons maintenant résoudre les 3 équations fondamentales (équation de Poisson
et les deux équations de continuité pour les électrons et les trous) et déterminer l’énergie
du vide (potentiel ) et les deux quasi-énergies de Fermi.

Remarque: Nous sommes hors équilibre et il y a donc en général une énergie de Fermi
pour chaque porteur !
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Dans le cas d’un semi-conducteur homogène parcouru par un courant, il suffit de
rapporter la tension externe sur l’énergie de Fermi et de considérer une pente homogène
pour toutes les bandes dans la structure entière.
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Illustration du cas général. Interprétation de l’exemple du schéma ci-dessus:

1) L’écart entre EF,n et Ei nous donne la concentration n dans toute la structure.

2) L’écart entre Ei et EF,p nous donne la concentration p dans toute la structure.

3) À gauche, la position de l’énergie de Fermi, entre Ei et Ev , indique un dopage P.

4) À droite, l’énergie de Fermi, entre Ec et Ei, indique un dopage N.

5) EF est plus basse à droite qu’à gauche. Nous avons donc une jonction P/N avec une
tension externe positive appliquée sur le N (jonction bloquante).

6) L’énergie du vide a un gradient négatif au centre de la structure, il y a donc un champ
électrique négatif à la jonction, avec un extrémum au centre.

7) La courbure de l’énergie du vide est négative à gauche et positive à droite. Il y a une
zone de charge négative à gauche et positive à droite de la jonction.

8) Au centre la structure est hors équilibre car les quasi-niveaux de Fermi sont différents.
EF,n < EF,p  nꞏp < ni

2 (loi d’action de masse modifiée), donc le taux net de
recombinaison thermique Uth est négatif. Il y a génération nette d’électrons/trous au
centre de la structure. Ces porteurs doivent être extrait du centre de la structure. Les
quasi-niveaux de Fermi ont un gradient négatif, les courants vont donc de droite à
gauche: les trous sortent à gauche, les électrons à droite.
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Dans les zones neutres de la plupart des structures microélectroniques, l’approximation
de faible injection est applicable. On peut considérer que la variation de concentration
des majoritaires est négligeable par rapport à cette concentration à l’équilibre.

 La concentration de majoritaires dans les zones neutres reste égale à la
concentration des majoritaires à l’équilibre.

Le taux net de recombinaison thermique Uth peut alors s’exprimer par les équations ci-
dessus. Il est approximé par la variation de concentration des minoritaires pn ou np

divisé par le temps de vie  des minoritaires.

Remarque:

Dans les zones neutres la variation de concentration des minoritaires est égale à celle des
majoritaires (pour maintenir la neutralité). Bien que négligeable par rapport aux
majoritaires, cette valeur est importante par rapport aux minoritaires.
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Avec l’approximation de faible injection, la concentration des majoritaires est connue. Le
calcul des concentrations ne contient plus que 2 inconnues: le champ E et la
concentration des minoritaires.

 L’équation de continuité pour les minoritaires est suffisante.

Les formes ci-dessus sont obtenues en introduisant le taux net de recombinaison
thermique en faible injection et les expressions des courants de drift et de diffusion dans
l’équation de continuité pour les minoritaires.

Nous allons maintenant utiliser et résoudre cette équation dans différents cas typiques.
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Un semiconducteur (par exemple de type N) homogène est illuminé optiquement au
point x=0. Il y a génération de paires électron/trou en x=0.

En x=0, la concentration des majoritaires est approximée par sa valeur à l’équilibre
(approximation de faible injection). Les minoritaires deviennent pn(0).

Nous recherchons la distribution à l’état stationnaire (/t=0) des minoritaires dans la
direction x. Pour cela nous écrivons l’équation de continuité des minoritaires en faible
injection. Il n’y a pas de champ électrique dans cette structure.

 Nous devons résoudre l’équation:

La solution, pour la concentration des minoritaires, est une distribution exponentielle
décroissante avec une « longueur de diffusion » donnée par la racine carrée du temps de
vie des minoritaires et de leur constante de diffusion. Typiquement la longueur de
diffusion est de quelques micromètres jusqu’au millimètre.

Remarque: Cet effet de diffusion des minoritaires va se retrouver dans les diodes p/n.
Des deux côtés de la zone de déplétion, des minoritaires sont injectés ou extraits suivant
la polarisation de la jonction (voir chapitre 6).

p
D

p
x pp






1

2

2
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Cette expérience se déroule dans le temps en deux phases.

1) Illumination: Dans cette phase (t<0), le semi-conducteur est illuminé avec un taux de
génération optique GL. Avec l’approximation de faible injection, l’équation de
continuité des minoritaires, en état stationnaire, sans champ électrique ni gradient de
concentration, devient:

Cela permet de déterminer la concentration en t=0: pn(0)-pn0=pꞏGL

2) Retour à l’équilibre: Cette phase n’est pas stationnaire, c’est un « transient ». Avec
l’approximation de faible injection, l’équation de continuité des minoritaires, sans
illumination, sans champ électrique ni gradient de concentration, devient:

La solution est une fonction exponentielle décroissante avec un temps de retour à
l’équilibre donné par le temps de vie des minoritaires p.
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Le temps de vie des porteurs minoritaires peut être déterminé par une mesure de
photoconduction. La variation relative de résistance d’un semi-conducteur dépend de la
variation relative de la concentration des majoritaires. Comme le matériel reste neutre, la
variation des majoritaires est égale à la variation des minoritaires, qui elle peut être
calculée par la formule finale de la page précédente.

 La résistance du photoconducteur suit une courbe exponentielle. Le temps de vie des
minoritaires est déterminé par le retour à l’équilibre lorsque l’illumination est
stoppée.
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Pour le silicium (bande indirecte), la recombinaison bande-à-bande est faible car il faut
une interaction avec les phonons (vibration du réseau). L’effet Auger devient dominant.
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L’expérience de Haynes-Shockley est très instructive. Un semi-conducteur (ici dopé p)
est mis sous tension (Vapplied <0) de façon à transporter les électrons de gauche à droite.
Au temps t=0, des porteurs libres minoritaires (ici des électrons) sont injectés au point A.
Cela peut se faire par exemple par une impulsion laser de très courte durée ou par une
impulsion électrique sur une diode p/n en mode directe (voir chapitre 6). Au point B, un
« collecteur » est implémenté (par exemple par une diode p/n en mode inverse, voir
chapitre 6). Ce collecteur extrait les minoritaires lorsqu’ils atteignent le point B, ils
produisent alors un courant I et une tension Vout.

Effets physiques:

a) Un courant de drift (dû au champ électrique E provoqué par le tension Vapplied) conduit
les minoritaires vers le collecteur. Le temps moyen de transport de A jusqu’à B
dépend de leur mobilité.

b) À l’émetteur, les minoritaires ont la forme d’un pulse bien défini dans le temps. Les
collisions aléatoires et donc la diffusion des porteurs minoritaires lors de leur
propagation élargit ce pulse.

c) Durant leur propagation, certains minoritaires disparaissent par recombinaison avec
un majoritaire.

Remarque: Le champ électrique E dans le semi-conducteur est donné par:

appliedE V l
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De nouveau, l’approximation de faible injection peut être introduite. L’équation de
continuité des minoritaires permet de calculer le profil des minoritaires le long du semi-
conducteur à des temps différents (figure 1) ainsi que la tension récoltée à la sortie
(figure 2).

1) Sur cette tension Vout nous pouvons déterminer 3 valeurs:

- le voltage maximum Vmax,

- le temps d’arrivée correspondant tmax,

- la largeur du pulse t.

2) La solution de l’équation de continuité contient elle aussi trois paramètres:

- la mobilité,

- la constante de diffusion,

- le temps de vie des minoritaires.
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Les formules ci-dessus permettent de relier la mobilité, la constante de diffusion et le
temps de vie des minoritaires aux grandeurs mesurées sur Vout dans l’expérience de
Haynes-Shockley.

Remarque: Pour la recombinaison, il est impossible de récolter tous les minoritaires
arrivant sur le collecteur. L’efficience du collecteur est inconnue. Pour déterminer le
temps de vie des minoritaires, il faut donc répéter l’expérience avec deux champs
électriques E1<E2. Le temps de transport tmax,2 (à haut champ) sera plus court que le
temps tmax,1 (à bas champ). Les effets de recombinaison seront plus importants pour un
long temps de transit.


max,1 max,2V V
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Interprétez le schéma de bandes ci-dessus.
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Questions de réflexion : 
 

 

1.1 

 

Qu’appelle-t-on la relation de dispersion d’une particule ? Exprimez-la pour 

une particule dans le vide. 

Comment peut-on déterminer graphiquement la vitesse de groupe et la masse 

effective de la particule à partir de cette relation ? 

 

 

1.2 

 

 

  

 

Considérez un atome « A » avec trois électrons sur deux niveaux d’énergie. 

Dessinez le schéma d’énergie de la cellule « AA » contenant deux atomes 

« A ». Expliquez la formation de bandes dans un monocristal basé sur cette 

cellule « AA ». 

 

 

1.3 

 

 

  

 

Qu’appelle t’on un semi-conducteur à gap direct ou indirect ? Qu’est-ce qu’un 

phonon ? Quand et pourquoi l’absorption optique requière-t-elle un phonon ? 

 

 

 

 

1.4 

 

 

 

 

Différenciez un métal, un semi-conducteur et un isolant en utilisez les concepts 

de bandes et d’énergie de Fermi. 

 

 

 

 

1.5 

 

 

 

 

A l’aide du schéma d’énergie, expliquez l’absorption optique dans un gaz et 

dans un semiconducteur monocristallin. 

 

 

 

 

1.6 

 

 

 

 

Décrivez et expliquez des expériences qui nécessitent une représentation « en 

particule » de l’électron ou de la lumière. Faites de même pour des expériences 

qui impliquent une représentation « ondulatoire » de l’électron ou de la 

lumière. Comment passer d’une représentation à l’autre ? 

 

 



Questions de réflexion :  

2.1 Expliquez le concept de « trous »  et de paires « électron-trou » à partir d’une 
représentation spatiale ainsi que sur le schéma de bande. Quelles 
caractéristiques des porteurs peut-on géométriquement déduire du schéma de 
bandes ?

2.2 Esquissez le taux d’occupation des électrons et des trous dans un 
semiconducteur ? Que représente l’  « énergie de Fermi » ? 

2.3 Reliez les concentrations n et p de porteurs libres à la densité d’état et à 
l’énergie de Fermi dans un semi-conducteur à l’équilibre.  
Discutez l’influence de la concentration de donneurs et d’accepteurs sur ces 
concentrations n et p. 

2.4 Posez la condition de neutralité pour un semi-conducteur extrinsèque à 
l’équilibre. 
Expliquez le graphique de Shockley pour déterminer l’énergie de Fermi dans 
ce matériel. 

2.5 Pour un semi-conducteur à l’équilibre, esquissez la dépendance en température 
de la concentration de majoritaires.  

2.6 Pour le silicium à température ambiante, reliez les concentrations n et p de 
porteurs libres avec le dopage. Qu’appelle-t-on « loi d’action de masse » ?  



Questions de réflexion :  
 

 

3.1 

 

Expliquez qualitativement l’état d’équilibre d’un semi-conducteur dopé n, 

placé dans le champ électrique produit par les deux plaques d’un condensateur. 

 

 

 

 

3.2 

 

 

 

 

Quelles sont les deux sortes de courants qui peuvent apparaître dans un 

semiconducteur à température homogène ? 

 

 

 

 

3.3 

 

 

 

 

Quels effets limitent la vitesse de drift d’un porteur libre dans un semi-

conducteur homogène sous tension ? 

Expliquez les notions de mobilité, de conductivité et de résistivité. 

 

 

 

3.4 

 

Discutez la mobilité des porteurs en fonction du dopage et de la température.  

 

 

 

 

 

3.5 

 

Discutez le set d’équations (3 équations) permettant de calculer les 

concentrations n et p de porteurs libres dans un semiconducteur à l’équilibre 

thermique.  

 

 

 

3.6 

 

Qu’est-ce que la zone de charge dans une jonction N+ /N à l’équilibre ? 

Quelles sont les deux composantes du courant dans cette structure ? 

 

 

 

 



Questions de réflexion :  
 
 
4.1 
 
 
 

 
Décrivez les phénomènes de recombinaison et de génération de porteurs libres. 
Comment l’équation de continuité décrit-elle la variation temporelle de 
porteurs libres ? 
 

 
4.2 
 
 
 

 
Reliez le concept de « quasi-niveaux de Fermi » aux concentrations n et p de 
porteurs libres.  
Quelle est la loi d’action de masse dans un semi-conducteur hors équilibre en 
état stationnaire ? 
 

 
4.3 
 
 
 

 
Quelles caractéristiques peut-on géométriquement déduire d’un schéma de 
bande dans une structure inhomogène (jonction p/n par exemple) ? 
Qu’indiquent les « quasi-niveaux de Fermi » ? 
 
 

 
4.4 

 
Pourquoi distingue-t-on le potentiel électrique interne du potentiel électrique 
externe ?  
 
 
 

 
4.5 

 
Expliquez les concepts de longueur de diffusion et de temps de vie des 
porteurs libres. 
 
 
 

 
4.6 

 
Décrivez l’expérience de Haynes-Shockley. Pourquoi utilise-t-on des porteurs 
minoritaires dans cette expérience ? 
 
 
 



Table pour le silicium 
 

Grandeur Electrons/ 

Bande de conduction/ 

Silicium N 

Trous/ 

Bande de valence/ 

Silicium P 

Masses effectives * 0.98l em m   

* 0.19t em m   

* 0.49hh em m   

* 0.16lh em m   

Masse Densitiy of States  
1/3

* 2/3 * * *

, 6dos n l t tm m m m     

*

, 1.08dos n em m   

 
2/3

* * 3/ 2 * 3/ 2

,dos p hh lhm m m   

*

, 0.55dos p em m   

Masse de conduction 

* * *

,

1 1 1 2

3n l tm m m

 
  

 
 

 
*

, 0.26n em m    

* *

* * 3/ 2 * 3/ 2

,

1 hh lh

p hh lh

m m

m m m





 

 
*

, 0.37p em m    

Energie du gap 1.1 [ ]gE eV    

gap indirect avec 6 vallées de conduction en [100] 

Affinité  4.05 [ ]eV   

Densité d’états effective 3/ 2

*

,3

1

2
c dos n

kT
N m



 
  

 
 

 
19 3[300 ] 2.8 10cN K cm   

3/ 2

*

,3

1

2
v dos p

kT
N m



 
  

 
 

 
19 3[300 ] 10vN K cm  

Densité d’état intrinsèque / 2gE kT

i c vn N N e


           10 3[300 ] 10in K cm  

Const. diélectrique relative 11.9s   

Densité des majoritaires en 

ionisation complète 
n Dn N  p Ap N  

Densité des minoritaires à 

l’équilibre 

2 /n i Dp n N  2 /p i An n N  

Mobilité à faible dopage 21500 [ / ]n cm V s    2450 [ / ]p cm V s    

Constante de diffusion 

 

(à faible dopage) 

n n

kT
D

q
  

239[ / ]nD cm s  

p p

kT
D

q
  

212[ / ]pD cm s  

Temps de vie des minoritaires  ,...,n ns ms    ,...,p ns ms   

Longueur de diffusion des 

minoritaires 
n n nL D   p p pL D   

 

Vert = valeur pour le silicium, rouge = valeur pour les électrons, bleu = valeur pour les trous 

 

me = 0.911.10
-30

[Kg],    341.05 10 [ ]J s   ,   

k=1.38.10
-23

 [J/K],   0[300 ] 25.8kT K meV ,  

q=1.602.10
-19

 [A.s],  12

0 8.86 10 /A s V m     . 

 


